3,843 research outputs found

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Privacy matters:issues within mechatronics

    Get PDF
    As mechatronic devices and components become increasingly integrated with and within wider systems concepts such as Cyber-Physical Systems and the Internet of Things, designer engineers are faced with new sets of challenges in areas such as privacy. The paper looks at the current, and potential future, of privacy legislation, regulations and standards and considers how these are likely to impact on the way in which mechatronics is perceived and viewed. The emphasis is not therefore on technical issues, though these are brought into consideration where relevant, but on the soft, or human centred, issues associated with achieving user privacy

    Petri net-based approach for web service automation resource coordination

    Get PDF
    In industrial automation, control systems and mechatronic devices are from diverse nature, supplied by different manufacturers and made of different technologies. The adoption of web services principles in an automated production system satisfies some requirements, namely the interoperability of such heterogeneous and distributed environments and the basis for flexibility and reconfigurability. Manufacturing processes require to access resources at different precedence levels and time instances, but in the other way resources may also be shared by different processes. A major challenge is then how individual services may interact, coordinating their activities. Petri nets may be used to describe complex system behaviour and therefore also applied to coordinate such systems. The paper introduces a Petri net based approach for the design, analysis and coordination of systems developed using web services to represent individual and autonomous resources. For this purpose, it is presented a Petri nets computational tool to support the design, validation and coordination of web service based automation systems.info:eu-repo/semantics/publishedVersio

    Experiences with mechatronics education at the University of Twente

    Get PDF
    This paper describes the experiences with a number of variants of mechatronic programmes offered by the University of Twente since 1989. Mechatronics education took place in a two-year mechatronic designer programme, in specialisations in Electrical and Mechanical Engineering and in an international MSc programme. In the new European BSc/MSc structure the University of Twente will offer an MSc mechatronics where the course language will be English. There have been large mechatronic projects, where 4 PhD and some 50 MSc students did their thesis work as well as two-week mechatronic projects in the BSc curricula of EE and ME. The latter show that mechatronics is not only a topic of interest for students who want to specialise in this direction, but that mechatronic projects also offer a challenge for electrical and mechanical engineering students in general
    • …
    corecore