53,622 research outputs found

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Collaboration and Virtualization in Large Information Systems Projects

    Get PDF
    A project is evolving through different phases from idea and conception until the experiments, implementation and maintenance. The globalization, the Internet, the Web and the mobile computing changed many human activities, and in this respect, the realization of the Information System (IS) projects. The projects are growing, the teams are geographically distributed, and the users are heterogeneous. In this respect, the realization of the large Information Technology (IT) projects needs to use collaborative technologies. The distribution of the team, the users' heterogeneity and the project complexity determines the virtualization. This paper is an overview of these aspects for large IT projects. It shortly present a general framework developed by the authors for collaborative systems in general and adapted to collaborative project management. The general considerations are illustrated on the case of a large IT project in which the authors were involved.large IT projects, collaborative systems, virtualization, framework for collaborative virtual systems

    Recommendation, collaboration and social search

    Get PDF
    This chapter considers the social component of interactive information retrieval: what is the role of other people in searching and browsing? For simplicity we begin by considering situations without computers. After all, you can interactively retrieve information without a computer; you just have to interact with someone or something else. Such an analysis can then help us think about the new forms of collaborative interactions that extend our conceptions of information search, made possible by the growth of networked ubiquitous computing technology. Information searching and browsing have often been conceptualized as a solitary activity, however they always have a social component. We may talk about 'the' searcher or 'the' user of a database or information resource. Our focus may be on individual uses and our research may look at individual users. Our experiments may be designed to observe the behaviors of individual subjects. Our models and theories derived from our empirical analyses may focus substantially or exclusively on an individual's evolving goals, thoughts, beliefs, emotions and actions. Nevertheless there are always social aspects of information seeking and use present, both implicitly and explicitly. We start by summarizing some of the history of information access with an emphasis on social and collaborative interactions. Then we look at the nature of recommendations, social search and interfaces to support collaboration between information seekers. Following this we consider how the design of interactive information systems is influenced by their social elements

    Supporting collaboration within the eScience community

    Get PDF
    Collaboration is a core activity at the heart of large-scale co- operative scientific experimentation. In order to support the emergence of Grid-based scientific collaboration, new models of e-Science working methods are needed. Scientific collaboration involves production and manipulation of various artefacts. Based on work done in the software engineering field, this paper proposes models and tools which will support the representation and production of such artefacts. It is necessary to provide facilities to classify, organise, acquire, process, share, and reuse artefacts generated during collaborative working. The concept of a "design space" will be used to organise scientific design and the composition of experiments, and methods such as self-organising maps will be used to support the reuse of existing artefacts. It is proposed that this work can be carried out and evaluated in the UK e-Science community, using an "industry as laboratory" approach to the research, building on the knowledge, expertise, and experience of those directly involved in e-Science

    Querying Large Physics Data Sets Over an Information Grid

    Get PDF
    Optimising use of the Web (WWW) for LHC data analysis is a complex problem and illustrates the challenges arising from the integration of and computation across massive amounts of information distributed worldwide. Finding the right piece of information can, at times, be extremely time-consuming, if not impossible. So-called Grids have been proposed to facilitate LHC computing and many groups have embarked on studies of data replication, data migration and networking philosophies. Other aspects such as the role of 'middleware' for Grids are emerging as requiring research. This paper positions the need for appropriate middleware that enables users to resolve physics queries across massive data sets. It identifies the role of meta-data for query resolution and the importance of Information Grids for high-energy physics analysis rather than just Computational or Data Grids. This paper identifies software that is being implemented at CERN to enable the querying of very large collaborating HEP data-sets, initially being employed for the construction of CMS detectors.Comment: 4 pages, 3 figure

    Towards a cyberinfrastructure for enhanced scientific

    Get PDF
    A new generation of information and communication infrastructures, including advanced Internet computing and Grid technologies, promises to enable more direct and shared access to more widely distributed computing resources than was previously possible. Scientific and technological collaboration, consequently, is more and more coming to be seen as critically dependent upon effective access to, and sharing of digital research data, and of the information tools that facilitate data being structured for efficient storage, search, retrieval, display and higher level analysis. A recent (February 2003) report to the U.S. NSF Directorate of Computer and Information System Engineering urged that funding be provided for a major enhancement of computer and network technologies, thereby creating a cyberinfrastructure whose facilities would support and transform the conduct of scientific and engineering research. The articulation of this programmatic vision reflects a widely shared expectation that solving the technical engineering problems associated with the advanced hardware and software systems of the cyberinfrastructure will yield revolutionary payoffs by empowering individual researchers and increasing the scale, scope and flexibility of collective research enterprises. The argument of this paper, however, is that engineering breakthroughs alone will not be enough to achieve such an outcome; success in realizing the cyberinfrastructure’s potential, if it is achieved, will more likely to be the resultant of a nexus of interrelated social, legal and technical transformations. The socio-institutional elements of a new infrastructure supporting collaboration – that is to say, its supposedly “softer” parts -- are every bit as complicated as the hardware and computer software, and, indeed, may prove much harder to devise and implement. The roots of this latter class of challenges facing “e-Science” will be seen to lie in the micro- and meso-level incentive structures created by the existing legal and administrative regimes. Although a number of these same conditions and circumstances appear to be equally significant obstacles to commercial provision of Grid services in interorganizational contexts, the domain of publicly supported scientific collaboration is held to be the more hospitable environment in which to experiment with a variety of new approaches to solving these problems. The paper concludes by proposing several “solution modalities,” including some that also could be made applicable for fields of information-intensive collaboration in business and finance that must regularly transcends organizational boundaries.

    Establishing the design knowledge for emerging interaction platforms

    Get PDF
    While awaiting a variety of innovative interactive products and services to appear in the market in the near future such as interactive tabletops, interactive TVs, public multi-touch walls, and other embedded appliances, this paper calls for preparation for the arrival of such interactive platforms based on their interactivity. We advocate studying, understanding and establishing the foundation for interaction characteristics and affordances and design implications for these platforms which we know will soon emerge and penetrate our everyday lives. We review some of the archetypal interaction platform categories of the future and highlight the current status of the design knowledge-base accumulated to date and the current rate of growth for each of these. We use example designs illustrating design issues and considerations based on the authors’ 12-year experience in pioneering novel applications in various forms and styles
    corecore