2,729 research outputs found

    Improved Modified Chaotic Invasive Weed Optimization Approach to Solve Multi-Target Assignment for Humanoid Robot

    Get PDF
    The paper presents an improved modified chaotic invasive weed optimization (IMCIWO) approach for solving a multi-target assignment for humanoid robot navigation. MCIWO is improved by utilizing the Bezier curve for smoothing the path and replaces the conventional split lines. In order to efficiently determine subsequent locations of the robot from the present location on the provided terrain, such that the routes to be specifically generated for the robot are relatively small, with the shortest distance from the barriers that have been generated using the IMCIWO approach. The MCIWO approach designed the path based on obstacles and targets position which is further smoothened by the Bezier curve. Simulations are performed which is further validated by real-time experiments in WEBOT and NAO robot respectively. They show good effectiveness with each other with a deviation of under 5%. Ultimately, the superiority of the developed approach is examined with existing techniques for navigation, and findings are substantially improved

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    Cluster Optimization for Improved Web Usage Mining

    Get PDF
    Now days, World Wide Web (WWW) has become rich and most powerful source of information. Conversely, it has become tricky and critical task to retrieve actual information due to its continuous expansion in dimensions. Web Usage Mining is a step-wise technique of extracting useful access patterns of the user from web. Web personalization makes use of web usage mining techniques, for knowledge acquisition process done by analyzing the user navigational patterns. The web page personalization involves clustering of different web pages having similar navigation patterns for an individual. Since cluster size expands due to the frequent access, optimization or shrinking the size of clusters becomes a chief consideration. This paper proposes a tactic of cluster optimization based on concept of swarm intelligence techniques. Later on based on the recognition of user access patterns, clustering is implemented using neural fuzzy approach i.e. NEF Class algorithm and cluster optimization is implemented using Ant Nest Mate Approach

    Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

    Get PDF
    Path planning is an essential algorithm in autonomous mobile robots, including agricultural robots, to find the shortest path and to avoid collisions with obstacles. Q-Learning algorithm is one of the reinforcement learning methods used for path planning. However, for multi-robot system, this algorithm tends to produce the same path for each robot. This research modifies the Q-Learning algorithm in order to produce path variations by utilizing the motivation model, i.e. achievement motivation, in which different motivation parameters will result in different optimum paths. The Motivated Q-Learning (MQL) algorithm proposed in this study was simulated in an area with three scenarios, i.e. without obstacles, uniform obstacles, and random obstacles. The results showed that, in the determined scenario, the MQL can produce 2 to 4 variations of optimum path without any potential of collisions (Jaccard similarity = 0%), in contrast to the Q-Learning algorithm that can only produce one optimum path variation. This result indicates that MQL can solve multi-robots path planning problems, especially when the number of robots is large, by reducing the possibility of collisions as well as decreasing the problem of queues. However, the average computational time of the MQL is slightly longer than that of the Q-Learning

    Active Inferants: An Active Inference Framework for Ant Colony Behavior

    Get PDF
    In this paper, we introduce an active inference model of ant colony foraging behavior, and implement the model in a series of in silico experiments. Active inference is a multiscale approach to behavioral modeling that is being applied across settings in theoretical biology and ethology. The ant colony is a classic case system in the function of distributed systems in terms of stigmergic decision-making and information sharing. Here we specify and simulate a Markov decision process (MDP) model for ant colony foraging. We investigate a well-known paradigm from laboratory ant colony behavioral experiments, the alternating T-maze paradigm, to illustrate the ability of the model to recover basic colony phenomena such as trail formation after food location discovery. We conclude by outlining how the active inference ant colony foraging behavioral model can be extended and situated within a nested multiscale framework and systems approaches to biology more generally
    • …
    corecore