771,319 research outputs found

    Human dynamics revealed through Web analytics

    Full text link
    When the World Wide Web was first conceived as a way to facilitate the sharing of scientific information at the CERN (European Center for Nuclear Research) few could have imagined the role it would come to play in the following decades. Since then, the increasing ubiquity of Internet access and the frequency with which people interact with it raise the possibility of using the Web to better observe, understand, and monitor several aspects of human social behavior. Web sites with large numbers of frequently returning users are ideal for this task. If these sites belong to companies or universities, their usage patterns can furnish information about the working habits of entire populations. In this work, we analyze the properly anonymized logs detailing the access history to Emory University's Web site. Emory is a medium size university located in Atlanta, Georgia. We find interesting structure in the activity patterns of the domain and study in a systematic way the main forces behind the dynamics of the traffic. In particular, we show that both linear preferential linking and priority based queuing are essential ingredients to understand the way users navigate the Web.Comment: 7 pages, 8 figure

    Collective Dynamics of Dark Web Marketplaces

    Get PDF
    Dark markets are commercial websites that use Bitcoin to sell or broker transactions involving drugs, weapons, and other illicit goods. Being illegal, they do not offer any user protection, and several police raids and scams have caused large losses to both customers and vendors over the past years. However, this uncertainty has not prevented a steady growth of the dark market phenomenon and a proliferation of new markets. The origin of this resilience have remained unclear so far, also due to the difficulty of identifying relevant Bitcoin transaction data. Here, we investigate how the dark market ecosystem re-organises following the disappearance of a market, due to factors including raids and scams. To do so, we analyse 24 episodes of unexpected market closure through a novel datasets of 133 million Bitcoin transactions involving 31 dark markets and their users, totalling 4 billion USD. We show that coordinated user migration from the closed market to coexisting markets guarantees overall systemic resilience beyond the intrinsic fragility of individual markets. The migration is swift, efficient and common to all market closures. We find that migrants are on average more active users in comparison to non-migrants and move preferentially towards the coexisting market with the highest trading volume. Our findings shed light on the resilience of the dark market ecosystem and we anticipate that they may inform future research on the self-organisation of emerging online markets

    AtomSim: web-deployed atomistic dynamics simulator

    Get PDF
    AtomSim, a collection of interfaces for computational crystallography simulations, has been developed. It uses forcefield-based dynamics through physics engines such as the General Utility Lattice Program, and can be integrated into larger computational frameworks such as the Virtual Neutron Facility for processing its dynamics into scattering functions, dynamical functions etc. It is also available as a Google App Engine-hosted web-deployed interface. Examples of a quartz molecular dynamics run and a hafnium dioxide phonon calculation are presented

    Knowledge web: realising the semantic web... all the way to knowledge-enhanced multimedia documents

    Get PDF
    The semantic web and semantic web services are major efforts in order to spread and to integrate knowledge technology to the whole web. The Knowledge Web network of excellence aims at supporting their developments at the best and largest European level and supporting industry in adopting them. It especially investigates the solution of scalability, heterogeneity and dynamics obstacles to the full development of the semantic web. We explain how Knowledge Web results should benefit knowledge-enhanced multimedia applications

    Dynamics of directed graphs: the world-wide Web

    Full text link
    We introduce and simulate a growth model of the world-wide Web based on the dynamics of outgoing links that is motivated by the conduct of the agents in the real Web to update outgoing links (re)directing them towards constantly changing selected nodes. Emergent statistical correlation between the distributions of outgoing and incoming links is a key feature of the dynamics of the Web. The growth phase is characterized by temporal fractal structures which are manifested in the hierarchical organization of links. We obtain quantitative agreement with the recent empirical data in the real Web for the distributions of in- and out-links and for the size of connected component. In a fully grown network of NN nodes we study the structure of connected clusters of nodes that are accessible along outgoing links from a randomly selected node. The distributions of size and depth of the connected clusters with a giant component exhibit supercritical behavior. By decreasing the control parameter---average fraction β\beta of updated and added links per time step---towards βc(N)<10\beta_c(N) < 10% the Web can resume a critical structure with no giant component in it. We find a different universality class when the updates of links are not allowed, i.e., for β≡0\beta \equiv 0, corresponding to the network of science citations.Comment: Revtex, 4 PostScript figures, small changes in the tex
    • …
    corecore