236,640 research outputs found

    Extended role-based access control model for enterprise systems and web services

    Get PDF
    This thesis intends to develop application-level access control models to address several major security issues in enterprise environments. The first goal is to provide simple and efficient authorization specifications to reduce the complexity of security management. The second goal is to provide dynamic access control for Web service applications. The third goal is to provide an access control framework for Semantic Web services. In this thesis, an Authorization-Function-Based Role-based Access Control (FB-RBAC) model is proposed for controlling enterprise systems at the application level. The unique features of the proposed model are authorization-function-based access control and constraint-based finegrained access control. This model significantly simplifies the management of an access control system by adopting roles and authorization-functions in authorization specifications. An extension of FB-RBAC, Extended FB-RBAC (ERBAC), is applied to Web service applications. New features such as credential-based access control and dynamic role assignment are added to FB-RBAC in order to address user heterogeneity and dynamicity in the Web environment. The proposed ERBAC model is then extended to support Semantic Web services. Each component of the ERBAC model is described by security ontologies. These correlated security ontologies are integrated with Semantic Web services to form a complete ontology network. Ontology-based role assignment is facilitated so that security information can be queries and discovered through a network of ontologies

    On the Security of Software Systems and Services

    Get PDF
    This work investigates new methods for facing the security issues and threats arising from the composition of software. This task has been carried out through the formal modelling of both the software composition scenarios and the security properties, i.e., policies, to be guaranteed. Our research moves across three different modalities of software composition which are of main interest for some of the most sensitive aspects of the modern information society. They are mobile applications, trust-based composition and service orchestration. Mobile applications are programs designed for being deployable on remote platforms. Basically, they are the main channel for the distribution and commercialisation of software for mobile devices, e.g., smart phones and tablets. Here we study the security threats that affect the application providers and the hosting platforms. In particular, we present a programming framework for the development of applications with a static and dynamic security support. Also, we implemented an enforcement mechanism for applying fine-grained security controls on the execution of possibly malicious applications. In addition to security, trust represents a pragmatic and intuitive way for managing the interactions among systems. Currently, trust is one of the main factors that human beings keep into account when deciding whether to accept a transaction or not. In our work we investigate the possibility of defining a fully integrated environment for security policies and trust including a runtime monitor. Finally, Service-Oriented Computing (SOC) is the leading technology for business applications distributed over a network. The security issues related to the service networks are many and multi-faceted. We mainly deal with the static verification of secure composition plans of web services. Moreover, we introduce the synthesis of dynamic security checks for protecting the services against illegal invocations

    A Framework of DevSecOps for Software Development Teams

    Get PDF
    This master's thesis explores a broad evaluation of automated security testing in the context of DevOps practices. The primary objective of this study is to propose a framework that facilitates the seamless integration of security scanning tools within DevOps practices. The thesis will focus on examining the existing set of tools and their effective integration into fully automated DevOps CI/CD pipelines. The thesis starts by examining the theoretical concepts of DevOps and provides guidelines for integrating security within DevOps methodologies. Furthermore, it assesses the current state of security by analysing the OWASP Web API top 10 security vulnerability list and evaluating existing security automation tools. Additionally, the research investigates the performance and efficacy of these tools across various stages of the SDLC and investigates ongoing research and development activities. A fully automated DevOps CI/CD pipeline is implemented to integrate security scanning tools, enforcing complete security checks throughout the SDLC. Azure DevOps build and release pipelines, along with Snyk, were used to create a comprehensive automated security scanning framework. The study considerably investigates the integration of these security scanning tools and assesses their influence on the overall security posture of the developed applications. The finding of the study reveals that security scanning tools can be efficiently integrated into fully automated DevOps practices. Based on the results, recommendations are provided for the selection of suitable tools and techniques to achieve a DevSecOps practice. In conclusion, this thesis provides valuable insights into security integration in DevOps practices, highlighting the effectiveness of security automation tools. The research also recommends areas for further improvements to meet the industry's evolving requirements

    An Intelligent Methodology for Modeling Semantic Knowledge in Industrial Networks

    Get PDF
    Networks has been involved in Industrial and IoT Applications for decades, creating new opportunities for more personalized services, improved security, greater automation and operational efficiency. Industry and businesses who prioritize and modernize their analytics strategy and technology to monetize their data will lead and succeed in our data-driven world. The network now provides even more detailed information through units and equipment databases, which provide details about the installed equipment, including models, designed capacity, performance and start / stop dates of the switches, routers, etc. repositories, digital files and business websites. Access to these collections is a serious challenge. Artificial intelligence and the Semantic Web provide a common framework for sharing and reusing knowledge in an efficient way. This article explores the architecture of intelligent agents to make the argument of an intelligent solution as opposed to traditional methods. We propose a new paradigm in which the intelligent management of the network is integrated into the conceptual repository of management information. This study focuses on an intelligent framework and language to formalize knowledge management descriptions and combine them with the existing SNMP management model. Based on the present proposal and the Internet management model, we describe the design and implementation of an integrated intelligent management platform called OntoNetwork

    A Framework for Anomaly Diagnosis in Smart Homes Based on Ontology

    Get PDF
    International audienceSmart homes are pervasive environments to enhance the comfort, the security, the safety and the energy consumption of the residence. An ambient intelligence system uses information of devices to represent the context of the home and its residents. Based on a context database, this system infer the daily life activities of the resident. Hence, abnormal behavior or chronic disease can be detected by the system. Due to the complexity of these systems, a large variety of anomalies may occur and disrupt the functioning of critical and essential applications. To detect anomalies and take appropriate measures, an anomaly management system has to be integrated in the overall architecture. In this paper, we propose an anomaly management framework for smart homes. This framework eases the work of designers in the conception of anomaly detection modules and processes to respond to an anomaly appropriately. Our framework can be used in all heterogeneous environments such as smart home because it uses Semantic Web ontologies to represent anomaly information. Our framework can be useful to detect hardware, software, network, operator and context faults. To test the efficiency of our anomaly management framework, we integrate it in the universAAL middleware. Based on a reasoner, our framework can easily infer some context anomalies and take appropriate measures to restore the system in a full functioning state

    Identity and Access Management System: a Web-Based Approach for an Enterprise

    Get PDF
    Managing digital identities and access control for enterprise users and applications remains one of the greatest challenges facing computing today. An attempt to address this issue led to the proposed security paradigm called Identity and Access Management (IAM) service based on IAM standards. Current approaches such as Lightweight Directory Access Protocol (LDAP), Central Authentication Service (CAS) and Security Assertion Markup Language (SAML) lack comprehensive analysis from conception to physical implementation to incorporate these solutions thereby resulting in impractical and fractured solutions. In this paper, we have implemented Identity and Access Management System (IAMSys) using the Lightweight Directory Access Protocol (LDAP) which focuses on authentication, authorization, administration of identities and audit reporting. Its primary concern is verification of the identity of the entity and granting correct level of access for resources which are protected in either the cloud environment or on-premise systems. A phased approach methodology was used in the research where it requires any enterprise or organization willing to adopt this must carry out a careful planning and demonstrated a good understanding of the technologies involved. The results of the experimental evaluation indicated that the average rating score is 72.0 % for the participants involved in this study. This implies that the idea of IAMSys is a way to mitigating security challenges associated with authentication, authorization, data protection and accountability if properly deployed
    corecore