114,051 research outputs found

    AN ATTEMPT TO DEFINE CONTEXT AWARENESS IN MOBILE E-HEALTH ENVIRONMENTS

    Get PDF
    Nurses, doctors, physiotherapists, psychologists and other professionals or specialists come together to provide care to home residing patients, making continuous assessment, diagnosis and treatment possible beyond the walls of hospitals. Such teams of professionals are focused on each individual patient, and are virtual, i.e. they make decisions without being together physically, dynamically, i.e. professionals come and go as needed, and collaborate, as they combine their knowledge to provide effective care. Our system, coined DITIS, is a web based system that enables the effective management and collaboration of virtual healthcare teams and accessing medical information in a secure manner from a variety of mobile devices from anytime and anyplace, adapting the information according to various parameters like, user role, access right, device capabilities and wireless medium. This paper introduces the DITIS system, and identifies the needs and challenges of co-ordinated teams of multidisciplinary healthcare professionals (HCPs) functioning in a context awareness environment under the wireless environment. Pilo

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact

    Developing a Framework for Creating mHealth Surveys

    Get PDF
    Various issues in the design of surveys for mobile health (mHealth) research projects yet exist. As mHealth solutions become more popular, new issues are brought into consideration. Researchers need to collect some critical information from participants in these mHealth studies. These mHealth studies require a specialized framework to create surveys, track progress and analyze user data. In these procedures, mHealth’s needs differ from other studies. Therefore, there has to be a new framework that satisfies needs of mHealth research studies. Although there are studies for creating efficient, robust and user-friendly surveys, there is no solution or study, which is specialized in mHealth area and solves specific problems of mHealth research studies. mHealth research studies sometimes require real-time access to user data. Reward systems may play a key role in their study. Most importantly, storing user information securely plays a key role in these studies. There is no such solution or study, which covers all these areas. In this thesis, we present guidelines for developing a framework for creating mHealth surveys. In doing this, we hope that we propose a solution for problems of creating and using of surveys in mHealth studies

    Emergency TeleOrthoPaedics m-health system for wireless communication links

    Get PDF
    For the first time, a complete wireless and mobile emergency TeleOrthoPaedics system with field trials and expert opinion is presented. The system enables doctors in a remote area to obtain a second opinion from doctors in the hospital using secured wireless telecommunication networks. Doctors can exchange securely medical images and video as well as other important data, and thus perform remote consultations, fast and accurately using a user friendly interface, via a reliable and secure telemedicine system of low cost. The quality of the transmitted compressed (JPEG2000) images was measured using different metrics and doctors opinions. The results have shown that all metrics were within acceptable limits. The performance of the system was evaluated successfully under different wireless communication links based on real data

    Impact of Mobile and Wireless Technology on Healthcare Delivery services

    Get PDF
    Modern healthcare delivery services embrace the use of leading edge technologies and new scientific discoveries to enable better cures for diseases and better means to enable early detection of most life-threatening diseases. The healthcare industry is finding itself in a state of turbulence and flux. The major innovations lie with the use of information technologies and particularly, the adoption of mobile and wireless applications in healthcare delivery [1]. Wireless devices are becoming increasingly popular across the healthcare field, enabling caregivers to review patient records and test results, enter diagnosis information during patient visits and consult drug formularies, all without the need for a wired network connection [2]. A pioneering medical-grade, wireless infrastructure supports complete mobility throughout the full continuum of healthcare delivery. It facilitates the accurate collection and the immediate dissemination of patient information to physicians and other healthcare care professionals at the time of clinical decision-making, thereby ensuring timely, safe, and effective patient care. This paper investigates the wireless technologies that can be used for medical applications, and the effectiveness of such wireless solutions in a healthcare environment. It discusses challenges encountered; and concludes by providing recommendations on policies and standards for the use of such technologies within hospitals

    Email for communicating results of diagnostic medical investigations to patients

    Get PDF
    <p>Background: As medical care becomes more complex and the ability to test for conditions grows, pressure on healthcare providers to convey increasing volumes of test results to patients is driving investigation of alternative technological solutions for their delivery. This review addresses the use of email for communicating results of diagnostic medical investigations to patients.</p> <p>Objectives: To assess the effects of using email for communicating results of diagnostic medical investigations to patients, compared to SMS/ text messaging, telephone communication or usual care, on outcomes, including harms, for health professionals, patients and caregivers, and health services.</p> <p>Search methods: We searched: the Cochrane Consumers and Communication Review Group Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1 2010), MEDLINE (OvidSP) (1950 to January 2010), EMBASE (OvidSP) (1980 to January 2010), PsycINFO (OvidSP) (1967 to January 2010), CINAHL (EbscoHOST) (1982 to February 2010), and ERIC (CSA) (1965 to January 2010). We searched grey literature: theses/dissertation repositories, trials registers and Google Scholar (searched July 2010). We used additional search methods: examining reference lists and contacting authors.</p> <p>Selection criteria: Randomised controlled trials, quasi-randomised trials, controlled before and after studies and interrupted time series studies of interventions using email for communicating results of any diagnostic medical investigations to patients, and taking the form of 1) unsecured email 2) secure email or 3) web messaging. All healthcare professionals, patients and caregivers in all settings were considered.</p> <p>Data collection and analysis: Two review authors independently assessed the titles and abstracts of retrieved citations. No studies were identified for inclusion. Consequently, no data collection or analysis was possible.</p> <p>Main results: No studies met the inclusion criteria, therefore there are no results to report on the use of email for communicating results of diagnostic medical investigations to patients.</p> <p>Authors' conclusions: In the absence of included studies, we can draw no conclusions on the effects of using email for communicating results of diagnostic medical investigations to patients, and thus no recommendations for practice can be stipulated. Further well-designed research should be conducted to inform practice and policy for communicating patient results via email, as this is a developing area.</p&gt

    Equity in the Digital Age: How Health Information Technology Can Reduce Disparities

    Get PDF
    While enormous medical and technological advancements have been made over the last century, it is only very recently that there have been similar rates of development in the field of health information technology (HIT).This report examines some of the advancements in HIT and its potential to shape the future health care experiences of consumers. Combined with better data collection, HIT offers signi?cant opportunities to improve access to care, enhance health care quality, and create targeted strategies that help promote health equity. We must also keep in mind that technology gaps exist, particularly among communities of color, immigrants, and people who do not speak English well. HIT implementation must be done in a manner that responds to the needs of all populations to make sure that it enhances access, facilitates enrollment, and improves quality in a way that does not exacerbate existing health disparities for the most marginalized and underserved
    corecore