199 research outputs found

    Web Content Delivery Optimization

    Get PDF
    Milliseconds matters, when they’re counted. If we consider the life of the universe into one single year, then on 31 December at 11:59:59.5 PM, “speed” was transportation’s concern, and now after 500 milliseconds it is web’s, and no one knows whose concern it would be in coming milliseconds, but at this very moment; this thesis proposes an optimization method, mainly for content delivery on slow connections. The method utilizes a proxy as a middle box to fetch the content; requested by a client, from a single or multiple web servers, and bundles all of the fetched image content types that fits into the bundling policy; inside a JavaScript file in Base64 format. This optimization method reduces the number of HTTP requests between the client and multiple web servers as a result of its proposed bundling solution, and at the same time optimizes the HTTP compression efficiency as a result of its proposed method of aggregative textual content compression. Page loading time results of the test web pages; which were specially designed and developed to capture the optimum benefits of the proposed method; proved up to 81% faster page loading time for all connection types. However, other tests in non-optimal situations such as webpages which use “Lazy Loading” techniques, showed just 35% to 50% benefits, that is only achievable on 2G and 3G connections (0.2 Mbps – 15 Mbps downlink) and not faster connections

    Design and prototype of a train-to-wayside communication architecture

    Get PDF
    Telecommunication has become very important in modern society and seems to be almost omnipresent, making daily life easier, more pleasant and connecting people everywhere. It does not only connect people, but also machines, enhancing the efficiency of automated tasks and monitoring automated processes. In this context the IBBT (Interdisciplinary Institute for BroadBand Technology) project TRACK (TRain Applications over an advanced Communication networK), sets the definition and prototyping of an end-to-end train-to-wayside communication architecture as one of the main research goals. The architecture provides networking capabilities for train monitoring, personnel applications and passenger Internet services. In the context of the project a prototype framework was developed to give a complete functioning demonstrator. Every aspect: tunneling and mobility, performance enhancements, and priority and quality of service were taken into consideration. In contrast to other research in this area, which has given mostly high-level overviews, TRACK resulted in a detailed architecture with all different elements present

    Web browsing optimization over 2.5G and 3G: end-to-end mechanisms vs. usage of performance enhancing proxies

    Get PDF
    Published version on Wiley's platform: https://onlinelibrary.wiley.com/doi/abs/10.1002/wcm.4562.5 Generation (2.5G) and Third Generation (3G) cellular wireless networks allow mobile Internet access withbearers specifically designed for data communications. However, Internet protocols under-utilize wireless widearea network (WWAN) link resources, mainly due to large round trip times (RTTs) and request–reply protocolpatterns. Web browsing is a popular service that suffers significant performance degradation over 2.5G and 3G. Inthis paper, we review and compare the two main approaches for improving web browsing performance over wirelesslinks: (i) using adequate end-to-end parameters and mechanisms and (ii) interposing a performance enhancingproxy (PEP) between the wireless and wired parts. We conclude that PEPs are currently the only feasible way forsignificantly optimizing web browsing behavior over 2.5G and 3G. In addition, we evaluate the two main currentcommercial PEPs over live general packet radio service (GPRS) and universal mobile telecommunications system(UMTS) networks. The results show that PEPs can lead to near-ideal web browsing performance in certain scenarios.Postprint (published version

    Enhancing QUIC over Satellite Networks

    Get PDF
    The use of Satellite Communication (SATCOM) networks for broadband connectivity has recently seen an increase in popularity due to, among other factors, the rise of the latest generations of cellular networks (5G/6G) and the deployment of high-throughput satellites. In parallel, major advances have been witnessed in the context of the transport layer: first, the standardization and early deployment of QUIC, a new-generation and general-purpose transport protocol; and second, modern congestion control proposals such as the Bottleneck Bandwidth and Round-trip propagation time (BBR) algorithm. Even though satellite links introduce several challenges for transport layer mechanisms, mainly due to their long propagation delay, satellite Internet providers have relied on TCP connection-splitting solutions implemented by Performance-Enhancing Proxies (PEPs) to greatly overcome many of these challenges. However, due to QUIC's fully encrypted nature, these performance-boosting solutions become nearly impossible for QUIC traffic, leaving it in great disadvantage when competing against TCP-PEP. In this context, IETF QUIC WG contributors are currently investigating this matter and suggesting new solutions that can help improve QUIC's performance over SATCOM. This thesis aims to study some of these proposals and evaluate them through experimentation using a real network testbed and an emulated satellite link

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Application acceleration for wireless and mobile data networks

    Get PDF
    This work studies application acceleration for wireless and mobile data networks. The problem of accelerating application can be addressed along multiple dimensions. The first dimension is advanced network protocol design, i.e., optimizing underlying network protocols, particulary transport layer protocol and link layer protocol. Despite advanced network protocol design, in this work we observe that certain application behaviors can fundamentally limit the performance achievable when operating over wireless and mobile data networks. The performance difference is caused by the complex application behaviors of these non-FTP applications. Explicitly dealing with application behaviors can improve application performance for new environments. Along this overcoming application behavior dimension, we accelerate applications by studying specific types of applications including Client-server, Peer-to-peer and Location-based applications. In exploring along this dimension, we identify a set of application behaviors that significantly affect application performance. To accommodate these application behaviors, we firstly extract general design principles that can apply to any applications whenever possible. These design principles can also be integrated into new application designs. We also consider specific applications by applying these design principles and build prototypes to demonstrate the effectiveness of the solutions. In the context of application acceleration, even though all the challenges belong to the two aforementioned dimensions of advanced network protocol design and overcoming application behavior are addressed, application performance can still be limited by the underlying network capability, particularly physical bandwidth. In this work, we study the possibility of speeding up data delivery by eliminating traffic redundancy present in application traffics. Specifically, we first study the traffic redundancy along multiple dimensions using traces obtained from multiple real wireless network deployments. Based on the insights obtained from the analysis, we propose Wireless Memory (WM), a two-ended AP-client solution to effectively exploit traffic redundancy in wireless and mobile environments. Application acceleration can be achieved along two other dimensions: network provision ing and quality of service (QoS). Network provisioning allocates network resources such as physical bandwidth or wireless spectrum, while QoS provides different priority to different applications, users, or data flows. These two dimensions have their respective limitations in the context of application acceleration. In this work, we focus on the two dimensions of overcoming application behavior and Eliminating traffic redundancy to improve application performance. The contribution of this work is as follows. First, we study the problem of application acceleration for wireless and mobile data networks, and we characterize the dimensions along which to address the problem. Second, we identify that application behaviors can significantly affect application performance, and we propose a set of design principles to deal with the behaviors. We also build prototypes to conduct system research. Third, we consider traffic redundancy elimination and propose a wireless memory approach.Ph.D.Committee Chair: Sivakumar, Raghupathy; Committee Member: Ammar, Mostafa; Committee Member: Fekri, Faramarz; Committee Member: Ji, Chuanyi; Committee Member: Ramachandran, Umakishor

    Systems for Challenged Network Environments.

    Full text link
    Developing regions face significant challenges in network access, making even simple network tasks unpleasant and rich media prohibitively difficult to access. Even as cellular network coverage is approaching a near-universal reach, good network connectivity remains scarce and expensive in many emerging markets. The underlying theme in this dissertation is designing network systems that better accommodate users in emerging markets. To do so, this dissertation begins with a nuanced analysis of content access behavior for web users in developing regions. This analysis finds the personalization of content access---and the fragmentation that results from it---to be significant factors in undermining many existing web acceleration mechanisms. The dissertation explores content access behavior from logs collected at shared internet access sites, as well as user activity information obtained from a commercial social networking service with over a hundred million members worldwide. Based on these observations, the dissertation then discusses two systems designed for improving end-user experience in accessing and using content in constrained networks. First, it deals with the challenge of distributing private content in these networks. By leveraging the wide availability of cellular telephones, the dissertation describes a system for personal content distribution based on user access behavior. The system enables users to request future data accesses, and it schedules content transfers according to current and expected capacity. Second, the dissertation looks at routing bulk data in challenged networks, and describes an experimentation platform for building systems for challenged networks. This platform enables researchers to quickly prototype systems for challenged networks, and iteratively evaluate these systems using mobility and network emulation. The dissertation describes a few data routing systems that were built atop this experimentation platform. Finally, the dissertation discusses the marketplace and service discovery considerations that are important in making these systems viable for developing-region use. In particular, it presents an extensible, auction-based market platform that relies on widely available communication tools for conveniently discovering and trading digital services and goods in developing regions. Collectively, this dissertation brings together several projects that aim to understand and improve end-user experience in challenged networks endemic to developing regions.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91401/1/azarias_1.pd
    • …
    corecore