180 research outputs found

    A COLLABORATIVE FILTERING APPROACH TO PREDICT WEB PAGES OF INTEREST FROMNAVIGATION PATTERNS OF PAST USERS WITHIN AN ACADEMIC WEBSITE

    Get PDF
    This dissertation is a simulation study of factors and techniques involved in designing hyperlink recommender systems that recommend to users, web pages that past users with similar navigation behaviors found interesting. The methodology involves identification of pertinent factors or techniques, and for each one, addresses the following questions: (a) room for improvement; (b) better approach, if any; and (c) performance characteristics of the technique in environments that hyperlink recommender systems operate in. The following four problems are addressed:Web Page Classification. A new metric (PageRank Ă— Inverse Links-to-Word count ratio) is proposed for classifying web pages as content or navigation, to help in the discovery of user navigation behaviors from web user access logs. Results of a small user study suggest that this metric leads to desirable results.Data Mining. A new apriori algorithm for mining association rules from large databases is proposed. The new algorithm addresses the problem of scaling of the classical apriori algorithm by eliminating an expensive joinstep, and applying the apriori property to every row of the database. In this study, association rules show the correlation relationships between user navigation behaviors and web pages they find interesting. The new algorithm has better space complexity than the classical one, and better time efficiency under some conditionsand comparable time efficiency under other conditions.Prediction Models for User Interests. We demonstrate that association rules that show the correlation relationships between user navigation patterns and web pages they find interesting can be transformed intocollaborative filtering data. We investigate collaborative filtering prediction models based on two approaches for computing prediction scores: using simple averages and weighted averages. Our findings suggest that theweighted averages scheme more accurately computes predictions of user interests than the simple averages scheme does.Clustering. Clustering techniques are frequently applied in the design of personalization systems. We studied the performance of the CLARANS clustering algorithm in high dimensional space in relation to the PAM and CLARA clustering algorithms. While CLARA had the best time performance, CLARANS resulted in clusterswith the lowest intra-cluster dissimilarities, and so was most effective in this regard

    Data Mining Algorithms for Internet Data: from Transport to Application Layer

    Get PDF
    Nowadays we live in a data-driven world. Advances in data generation, collection and storage technology have enabled organizations to gather data sets of massive size. Data mining is a discipline that blends traditional data analysis methods with sophisticated algorithms to handle the challenges posed by these new types of data sets. The Internet is a complex and dynamic system with new protocols and applications that arise at a constant pace. All these characteristics designate the Internet a valuable and challenging data source and application domain for a research activity, both looking at Transport layer, analyzing network tra c flows, and going up to Application layer, focusing on the ever-growing next generation web services: blogs, micro-blogs, on-line social networks, photo sharing services and many other applications (e.g., Twitter, Facebook, Flickr, etc.). In this thesis work we focus on the study, design and development of novel algorithms and frameworks to support large scale data mining activities over huge and heterogeneous data volumes, with a particular focus on Internet data as data source and targeting network tra c classification, on-line social network analysis, recommendation systems and cloud services and Big data

    Exploring Pattern Mining Algorithms for Hashtag Retrieval Problem

    Get PDF
    Hashtag is an iconic feature to retrieve the hot topics of discussion on Twitter or other social networks. This paper incorporates the pattern mining approaches to improve the accuracy of retrieving the relevant information and speeding up the search performance. A novel algorithm called PM-HR (Pattern Mining for Hashtag Retrieval) is designed to first transform the set of tweets into a transactional database by considering two different strategies (trivial and temporal). After that, the set of the relevant patterns is discovered, and then used as a knowledge-based system for finding the relevant tweets based on users\u27 queries under the similarity search process. Extensive results are carried out on large and different tweet collections, and the proposed PM-HR outperforms the baseline hashtag retrieval approaches in terms of runtime, and it is very competitive in terms of accuracy

    Exploring Pattern Mining Algorithms for Hashtag Retrieval Problem

    Get PDF
    Hashtag is an iconic feature to retrieve the hot topics of discussion on Twitter or other social networks. This paper incorporates the pattern mining approaches to improve the accuracy of retrieving the relevant information and speeding up the search performance. A novel algorithm called PM-HR (Pattern Mining for Hashtag Retrieval) is designed to first transform the set of tweets into a transactional database by considering two different strategies (trivial and temporal). After that, the set of the relevant patterns is discovered, and then used as a knowledge-based system for finding the relevant tweets based on users' queries under the similarity search process. Extensive results are carried out on large and different tweet collections, and the proposed PM-HR outperforms the baseline hashtag retrieval approaches in terms of runtime, and it is very competitive in terms of accuracy.publishedVersio

    IMPROVING RECOMMENDATION PERFORMANCE WITH USER INTEREST EVOLUTION PATTERNS

    Get PDF
    Effective recommendation is indispensable to customized or personalized services. Collaborative filtering approach is a salient technique to support automated recommendations, which relies on the profiles of customers to make recommendations to a target customer based on the neighbors with similar preferences. However, traditional collaborative recommendation techniques only use static information of customers’ preferences and ignore the evolution of their purchasing behaviours which contain valuable information for making recommendations. Thus, this study proposes an approach to increase the effectiveness of personalized recommendations by mining the sequence patterns from the evolving preferences of a target customer over time. The experimental results have shown that the proposed technique has improved the recommendation precision in comparison with collaborative filtering method based on Top k recommendation

    Implementation of an interactive pattern mining framework on electronic health record datasets

    Get PDF
    Large collections of electronic patient records contain a broad range of clinical information highly relevant for data analysis. However, they are maintained primarily for patient administration, and automated methods are required to extract valuable knowledge for predictive, preventive, personalized and participatory medicine. Sequential pattern mining is a fundamental task in data mining which can be used to find statistically relevant, non-trivial temporal dependencies of events such as disease comorbidities. This works objective is to use this mining technique to identify disease associations based on ICD-9-CM codes data of the entire Taiwanese population obtained from Taiwan’s National Health Insurance Research Database. This thesis reports the development and implementation of the Disease Pattern Miner – a pattern mining framework in a medical domain. The framework was designed as a Web application which can be used to run several state-of-the-art sequence mining algorithms on electronic health records, collect and filter the results to reduce the number of patterns to a meaningful size, and visualize the disease associations as an interactive model in a specific population group. This may be crucial to discover new disease associations and offer novel insights to explain disease pathogenesis. A structured evaluation of the data and models are required before medical data-scientist may use this application as a tool for further research to get a better understanding of disease comorbidities

    GENERIC FRAMEWORKS FOR INTERACTIVE PERSONALIZED INTERESTING PATTERN DISCOVERY

    Get PDF
    The traditional frequent pattern mining algorithms generate an exponentially large number of patterns of which a substantial portion are not much significant for many data analysis endeavours. Due to this, the discovery of a small number of interesting patterns from the exponentially large number of frequent patterns according to a particular user\u27s interest is an important task. Existing works on patter
    • …
    corecore