35,559 research outputs found

    Web similarity in sets of search terms using database queries

    Get PDF
    Normalized web distance (NWD) is a similarity or normalized semantic distance based on the World Wide Web or another large electronic database, for instance Wikipedia, and a search engine that returns reliable aggregate page counts. For sets of search terms the NWD gives a common similarity (common semantics) on a scale from 0 (identical) to 1 (completely different). The NWD approximates the similarity of members of a set according to all (upper semi) computable properties. We develop the theory and give applications of classifying using Amazon, Wikipedia, and the NCBI website from the National Institutes of Health. The last gives new correlations between health hazards. A restriction of the NWD to a set of two yields the earlier normalized Google distance (NGD), but no combina

    Web similarity in sets of search terms using database queries

    Get PDF
    Normalized web distance (NWD) is a similarity or normalized semantic distance based on the World Wide Web or another large electronic database, for instance Wikipedia, and a search engine that returns reliable aggregate page counts. For sets of search terms the NWD gives a common similarity (common semantics) on a scale from 0 (identical) to 1 (completely different). The NWD approximates the similarity of members of a set according to all (upper semi)computable properties. We develop the theory and give applications of classifying using Amazon, Wikipedia, and the NCBI website from the National Institutes of Health. The last gives new correlations between health hazards. A restriction of the NWD to a set of two yields the earlier normalized google distance (NGD) but no combination of the NGD's of pairs in a set can extract the information the NWD extracts from the set. The NWD enables a new contextual (different databases) learning approachbased o

    Design and Implementation of the UniProt Website

    Get PDF
    The UniProt consortium is the main provider of protein sequence and annotation data for much of the life sciences community. The "www.uniprot.org":http://www.uniprot.org website is the primary access point to this data and to documentation and basic tools for the data. This paper discusses the design and implementation of the new website, which was released in July 2008, and shows how it improves data access for users with different levels of experience, as well as to machines for programmatic access

    Implementation of an efficient Fuzzy Logic based Information Retrieval System

    Full text link
    This paper exemplifies the implementation of an efficient Information Retrieval (IR) System to compute the similarity between a dataset and a query using Fuzzy Logic. TREC dataset has been used for the same purpose. The dataset is parsed to generate keywords index which is used for the similarity comparison with the user query. Each query is assigned a score value based on its fuzzy similarity with the index keywords. The relevant documents are retrieved based on the score value. The performance and accuracy of the proposed fuzzy similarity model is compared with Cosine similarity model using Precision-Recall curves. The results prove the dominance of Fuzzy Similarity based IR system.Comment: arXiv admin note: substantial text overlap with http://ntz-develop.blogspot.in/ , http://www.micsymposium.org/mics2012/submissions/mics2012_submission_8.pdf , http://www.slideshare.net/JeffreyStricklandPhD/predictive-modeling-and-analytics-selectchapters-41304405 by other author

    Visual Information Retrieval in Digital Libraries

    Get PDF
    The emergence of information highways and multimedia computing has resulted in redefining the concept of libraries. It is widely believed that in the next few years, a significant portion of information in libraries will be in the form of multimedia electronic documents. Many approaches are being proposed for storing, retrieving, assimilating, harvesting, and prospecting information from these multimedia documents. Digital libraries are expected to allow users to access information independent of the locations and types of data sources and will provide a unified picture of information. In this paper, we discuss requirements of these emerging information systems and present query methods and data models for these systems. Finally, we briefly present a few examples of approaches that provide a preview of how things will be done in the digital libraries in the near future.published or submitted for publicatio

    Ranking relations using analogies in biological and information networks

    Get PDF
    Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects S={A(1):B(1),A(2):B(2),,A(N):B(N)}\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}, measures how well other pairs A:B fit in with the set S\mathbf{S}. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in S\mathbf{S}? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS321 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Information Retrieval Models

    Get PDF
    Many applications that handle information on the internet would be completely\ud inadequate without the support of information retrieval technology. How would\ud we find information on the world wide web if there were no web search engines?\ud How would we manage our email without spam filtering? Much of the development\ud of information retrieval technology, such as web search engines and spam\ud filters, requires a combination of experimentation and theory. Experimentation\ud and rigorous empirical testing are needed to keep up with increasing volumes of\ud web pages and emails. Furthermore, experimentation and constant adaptation\ud of technology is needed in practice to counteract the effects of people that deliberately\ud try to manipulate the technology, such as email spammers. However,\ud if experimentation is not guided by theory, engineering becomes trial and error.\ud New problems and challenges for information retrieval come up constantly.\ud They cannot possibly be solved by trial and error alone. So, what is the theory\ud of information retrieval?\ud There is not one convincing answer to this question. There are many theories,\ud here called formal models, and each model is helpful for the development of\ud some information retrieval tools, but not so helpful for the development others.\ud In order to understand information retrieval, it is essential to learn about these\ud retrieval models. In this chapter, some of the most important retrieval models\ud are gathered and explained in a tutorial style
    corecore