2,862 research outputs found

    Authorization Framework for the Internet-of-Things

    Get PDF
    This paper describes a framework that allows fine-grained and flexible access control to connected devices with very limited processing power and memory. We propose a set of security and performance requirements for this setting and derive an authorization framework distributing processing costs between constrained devices and less constrained back-end servers while keeping message exchanges with the constrained devices at a minimum. As a proof of concept we present performance results from a prototype implementing the device part of the framework

    Building IoT Applications with Raspberry Pi and Low Power IQRF Communication Modules

    Get PDF
    Typical Internet of Things (IoT) applications involve collecting information automatically from diverse geographically-distributed smart sensors and concentrating the information into more powerful computers. The Raspberry Pi platform has become a very interesting choice for IoT applications for several reasons: (1) good computing power/cost ratio; (2) high availability; it has become a de facto hardware standard; and (3) ease of use; it is based on operating systems with a big community of users. In IoT applications, data are frequently carried by means of wireless sensor networks in which energy consumption is a key issue. Energy consumption is especially relevant for smart sensors that are scattered over wide geographical areas and may need to work unattended on batteries for long intervals of time. In this scenario, it is convenient to ease the construction of IoT applications while keeping energy consumption to a minimum at the sensors. This work proposes a possible gateway implementation with specific technologies. It solves the following research question: how to build gateways for IoT applications with Raspberry Pi and low power IQRF communication modules. The following contributions are presented: (1) one architecture for IoT gateways that integrates data from sensor nodes into a higher level application based on low-cost/low-energy technologies; (2) bindings in Java and C that ease the construction of IoT applications; (3) an empirical model that describes the consumption of the communications at the nodes (smart sensors) and allows scaling their batteries; and (4) validation of the proposed energy model at the battery-operated nodes.This work was supported in part by the University of the Basque Country (UPV/EHU) under projects EHU13/42 and UFI11/28 and by the Basque Government (GV/EJ) under projects CPS4PSS ETORTEK14/10 and Thinking Factory ETORGAI14

    Universal Mobile Service Execution Framework for Device-To-Device Collaborations

    Get PDF
    There are high demands of effective and high-performance of collaborations between mobile devices in the places where traditional Internet connections are unavailable, unreliable, or significantly overburdened, such as on a battlefield, disaster zones, isolated rural areas, or crowded public venues. To enable collaboration among the devices in opportunistic networks, code offloading and Remote Method Invocation are the two major mechanisms to ensure code portions of applications are successfully transmitted to and executed on the remote platforms. Although these domains are highly enjoyed in research for a decade, the limitations of multi-device connectivity, system error handling or cross platform compatibility prohibit these technologies from being broadly applied in the mobile industry. To address the above problems, we designed and developed UMSEF - an Universal Mobile Service Execution Framework, which is an innovative and radical approach for mobile computing in opportunistic networks. Our solution is built as a component-based mobile middleware architecture that is flexible and adaptive with multiple network topologies, tolerant for network errors and compatible for multiple platforms. We provided an effective algorithm to estimate the resource availability of a device for higher performance and energy consumption and a novel platform for mobile remote method invocation based on declarative annotations over multi-group device networks. The experiments in reality exposes our approach not only achieve the better performance and energy consumption, but can be extended to large-scaled ubiquitous or IoT systems

    TeXTracT: a Web-based Tool for Building NLP-enabled Applications

    Get PDF
    Over the last few years, the software industry has showed an increasing interest for applications with Natural Language Processing (NLP) capabilities. Several cloud-based solutions have emerged with the purpose of simplifying and streamlining the integration of NLP techniques via Web services. These NLP techniques cover tasks such as language detection, entity recognition, sentiment analysis, classification, among others. However, the services provided are not always as extensible and configurable as a developer may want, preventing their use in industry-grade developments and limiting their adoption in specialized domains (e.g., for analyzing technical documentation). In this context, we have developed a tool called TeXTracT that is designed to be composable, extensible, configurable and accessible. In our tool, NLP techniques can be accessed independently and orchestrated in a pipeline via RESTful Web services. Moreover, the architecture supports the setup and deployment of NLP techniques on demand. The NLP infrastructure is built upon the UIMA framework, which defines communication protocols and uniform service interfaces for text analysis modules. TeXTracT has been evaluated in two case-studies to assess its pros and cons.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    GI Systems for public health with an ontology based approach

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Health is an indispensable attribute of human life. In modern age, utilizing technologies for health is one of the emergent concepts in several applied fields. Computer science, (geographic) information systems are some of the interdisciplinary fields which motivates this thesis. Inspiring idea of the study is originated from a rhetorical disease DbHd: Database Hugging Disorder, defined by Hans Rosling at World Bank Open Data speech in May 2010. The cure of this disease can be offered as linked open data, which contains ontologies for health science, diseases, genes, drugs, GEO species etc. LOD-Linked Open Data provides the systematic application of information by publishing and connecting structured data on the Web. In the context of this study we aimed to reduce boundaries between semantic web and geo web. For this reason a use case data is studied from Valencia CSISP- Research Center of Public Health in which the mortality rates for particular diseases are represented spatio-temporally. Use case data is divided into three conceptual domains (health, spatial, statistical), enhanced with semantic relations and descriptions by following Linked Data Principles. Finally in order to convey complex health-related information, we offer an infrastructure integrating geo web and semantic web. Based on the established outcome, user access methods are introduced and future researches/studies are outlined
    corecore