81,918 research outputs found

    Model Driven Mutation Applied to Adaptative Systems Testing

    Get PDF
    Dynamically Adaptive Systems modify their behav- ior and structure in response to changes in their surrounding environment and according to an adaptation logic. Critical sys- tems increasingly incorporate dynamic adaptation capabilities; examples include disaster relief and space exploration systems. In this paper, we focus on mutation testing of the adaptation logic. We propose a fault model for adaptation logics that classifies faults into environmental completeness and adaptation correct- ness. Since there are several adaptation logic languages relying on the same underlying concepts, the fault model is expressed independently from specific adaptation languages. Taking benefit from model-driven engineering technology, we express these common concepts in a metamodel and define the operational semantics of mutation operators at this level. Mutation is applied on model elements and model transformations are used to propagate these changes to a given adaptation policy in the chosen formalism. Preliminary results on an adaptive web server highlight the difficulty of killing mutants for adaptive systems, and thus the difficulty of generating efficient tests.Comment: IEEE International Conference on Software Testing, Verification and Validation, Mutation Analysis Workshop (Mutation 2011), Berlin : Allemagne (2011

    An empirical study on mutation testing of WS-BPEL programs

    Get PDF
    Nowadays, applications are increasingly deployed as Web services in the globally distributed cloud computing environment. Multiple services are normally composed to fulfill complex functionalities. Business Process Execution Language for Web Services (WS-BPEL) is an XML-based service composition language that is used to define a complex business process by orchestrating multiple services. Compared with traditional applications, WS-BPEL programs pose many new challenges to the quality assurance, especially testing, of service compositions. A number of techniques have been proposed for testing WS-BPEL programs, but only a few studies have been conducted to systematically evaluate the effectiveness of these techniques. Mutation testing has been widely acknowledged as not only a testing method in its own right but also a popular technique for measuring the fault-detection effectiveness of other testing methods. Several previous studies have proposed a family of mutation operators for generating mutants by seeding various faults into WS-BPEL programs. In this study, we conduct a series of empirical studies to evaluate the applicability and effectiveness of various mutation operators for WS-BPEL programs. The experimental results provide insightful and comprehensive guidance for mutation testing of WS-BPEL programs in practice. In particular, our work is the systematic study in the selection of effective mutation operators specifically for WS-BPEL programs

    Evolutionary mutation testing for IoT with recorded and generated events

    Get PDF
    Mutation testing is a testing technique that has been applied successfully to several programming languages. Despite its benefits for software testing, the high computational cost of mutation testing has kept it from being widely used. Several refinements have been proposed to reduce its cost by reducing the number of generated mutants; one of those is evolutionary mutation testing (EMT). Evolutionary mutation testing aims at generating a reduced set of mutants with an evolutionary algorithm, which searches for potentially equivalent and difficult to kill mutants that help improve the test suite. Evolutionary mutation testing has been evaluated in two contexts so far, ie, web service compositions and object‐oriented C++ programmes. This study explores its performance when applied to event processing language queries of various domains. This study also considers the impact of the test data, since a lack of events or the need to have specific values in them can hinder testing. The effectiveness of evolutionary mutation testing with the original test data generators and the new internet of things test event generator tool is compared in multiple case studies

    Class mutation operators for C++ object-oriented systems

    Get PDF
    Mutation testing is a fault injection testing technique around which a great variety of studies and tools for different programming languages have been developed. Nevertheless, the mutation testing research with respect to C++ is pending. This paper proposes a set of class mutation operators related to this language and its particular object-oriented (OO) features. In addition, an implementation technique to apply mutation testing based on the traversal of the abstract syntax tree (AST) is presented. Finally, an experiment is conducted to study the operator behaviour with different C++ programs, suggesting their usefulness in the creation of complete test suites. The analysis includes a Web service (WS) library, one of the domains where this technique can prove useful, considering its challenging testing phase and that C++ is still a reference language for critical distributed systems WS

    Class mutation operators for C++ object-oriented systems

    Get PDF
    Mutation testing is a fault injection testing technique around which a great variety of studies and tools for different programming languages have been developed. Nevertheless, the mutation testing research with respect to C++ is pending. This paper proposes a set of class mutation operators related to this language and its particular object-oriented (OO) features. In addition, an implementation technique to apply mutation testing based on the traversal of the abstract syntax tree (AST) is presented. Finally, an experiment is conducted to study the operator behaviour with different C++ programs, suggesting their usefulness in the creation of complete test suites. The analysis includes a Web service (WS) library, one of the domains where this technique can prove useful, considering its challenging testing phase and that C++ is still a reference language for critical distributed systems WS

    Worst-input mutation approach to web services vulnerability testing based on SOAP messages

    Get PDF
    The growing popularity and application of Web services have led to an increase in attention to the vulnerability of software based on these services. Vulnerability testing examines the trustworthiness, and reduces the security risks of software systems, however such testing of Web services has become increasing challenging due to the cross-platform and heterogeneous characteristics of their deployment. This paper proposes a worst-input mutation approach for testing Web service vulnerability based on SOAP (Simple Object Access Protocol) messages. Based on characteristics of the SOAP messages, the proposed approach uses the farthest neighbor concept to guide generation of the test suite. The test case generation algorithm is presented, and a prototype Web service vulnerability testing tool described. The tool was applied to the testing of Web services on the Internet, with experimental results indicating that the proposed approach, which found more vulnerability faults than other related approaches, is both practical and effective

    Challenges to Implementation of an Epidermal Growth Factor Receptor Testing Strategy for Non–Small-Cell Lung Cancer in a Publicly Funded Health Care System

    Get PDF
    Background:Data from seven recent randomized clinical trials have demonstrated that epidermal growth factor (EGFR) mutation status is predictive of improved progression-free survival and quality of life from first-line EGFR tyrosine kinase inhibitor therapy compared with platinum-based chemotherapy. We examined barriers to the initial implementation of a national EGFR testing policy in Canada.Methods:Five laboratories across Canada underwent a validation and quality-control exercise for EGFR mutation testing using reverse transcriptase–polymerase chain reaction with financial support from the pharmaceutical industry for the initial 12 months. Oncologists registered patients with nonquamous histology for EGFR mutation testing using a Web-based platform. Basic demographics were collected including age, histology, sex, smoking status, and ethnicity. The decision to prescribe gefitinib was subsequently registered on the system.Results:Between March and December 2010, 2104 requests were received for EGFR mutation testing. Demographic details are as follows: adenocarcinoma (91.6%); Asian ethnicity (13.9%); female (58%); light/never smoker (41.3%); stage IV disease (87.1%). The number of tests requested each month ranged from 200 to 250. Mutation testing was conducted in 1771 of 2104 requests (84%). The median turnaround time for EGFR testing was 18 days (standard deviation 9.7). Gefitinib was prescribed in 302 patients (17.1%). The number of test requests dropped to 50 to 100 per month at the end of the initial 12 months.Conclusion:There was rapid uptake of EGFR mutation testing into routine clinical practice in Canada. Uptake of EGFR mutation testing dropped substantially once funding from pharmaceutical industry was discontinued. There is a need for a national strategy to ensure resources are in place to implement molecular testing for new molecularly targeted agents

    Dynamic random testing of web services: a methodology and evaluation

    Get PDF
    In recent years, Service Oriented Architecture (SOA) has been increasingly adopted to develop distributed applications in the context of the Internet. To develop reliable SOA-based applications, an important issue is how to ensure the quality of web services. In this paper, we propose a dynamic random testing (DRT) technique for web services, which is an improvement over the widely-practiced random testing (RT) and partition testing (PT). We examine key issues when adapting DRT to the context of SOA, including a framework, guidelines for parameter settings, and a prototype for such an adaptation. Empirical studies are reported where DRT is used to test three real-life web services, and mutation analysis is employed to measure the effectiveness. Our experimental results show that, compared with the three baseline techniques, RT, Adaptive Testing (AT) and Random Partition Testing (RPT), DRT demonstrates higher fault-detection effectiveness with a lower test case selection overhead. Furthermore, the theoretical guidelines of parameter setting for DRT are confirmed to be effective. The proposed DRT and the prototype provide an effective and efficient approach for testing web services. IEE

    Assessing Black-box Test Case Generation Techniques for Microservices

    Get PDF
    Testing of microservices architectures (MSA) – today a popular software architectural style - demands for automation in its several tasks, like tests generation, prioritization and execution. Automated black-box generation of test cases for MSA currently borrows techniques and tools from the testing of RESTful Web Services. This paper: i) proposes the uTest stateless pairwise combinatorial technique (and its automation tool) for test cases generation for functional and robustness microservices testing, and ii) experimentally compares - with three open-source MSA used as subjects - four state-of-the-art black-box tools conceived for Web Services, adopting evolutionary-, dependencies- and mutation-based generation techniques, and the pro- posed uTest combinatorial tool. The comparison shows little differences in coverage values; uTest pairwise testing achieves better average failure rate with a considerably lower number of tests. Web Services tools do not perform for MSA as well as a tester might expect, highlighting the need for MSA-specific techniques

    Web API Fragility: How Robust is Your Web API Client

    Full text link
    Web APIs provide a systematic and extensible approach for application-to-application interaction. A large number of mobile applications makes use of web APIs to integrate services into apps. Each Web API's evolution pace is determined by their respective developer and mobile application developers are forced to accompany the API providers in their software evolution tasks. In this paper we investigate whether mobile application developers understand and how they deal with the added distress of web APIs evolving. In particular, we studied how robust 48 high profile mobile applications are when dealing with mutated web API responses. Additionally, we interviewed three mobile application developers to better understand their choices and trade-offs regarding web API integration.Comment: Technical repor
    • 

    corecore