102 research outputs found

    Cryptographic Protection of Digital Identity

    Get PDF
    Dizertační práce se zabývá kryptografickými schématy zvyšující ochranu soukromí uživatelů v systémech řízení přístupu a sběru dat. V současnosti jsou systémy fyzického řízení přístupu na bázi čipových karet využívány téměř dennodenně většinou z nás, například v zaměstnání, ve veřejné dopravě a v hotelech. Tyto systémy však stále neposkytují dostatečnou kryptografickou ochranu a tedy bezpečnost. Uživatelské identifikátory a klíče lze snadno odposlechnout a padělat. Funkce, které by zajišťovaly ochranu soukromí uživatele, téměř vždy chybí. Proto je zde reálné riziko možného sledovaní lidí, jejich pohybu a chovaní. Poskytovatelé služeb nebo případní útočníci, kteří odposlouchávají komunikaci, mohou vytvářet profily uživatelů, ví, co dělají, kde se pohybují a o co se zajímají. Za účelem zlepšení tohoto stavu jsme navrhli čtyři nová kryptografická schémata založená na efektivních důkazech s nulovou znalostí a kryptografii eliptických křivek. Konkrétně dizertační práce prezentuje tři nová autentizační schémata pro využití v systémech řízení přístupu a jedno nové schéma pro využití v systémech sběru dat. První schéma využívá distribuovaný autentizační přístup vyžadující spolupráci více RFID prvků v autentizačním procesu. Tato vlastnost je výhodná zvláště v případech řízení přístupu do nebezpečných prostor, kdy pro povolení přístupu uživatele je nezbytné, aby byl uživatel vybaven ochrannými pomůckami (se zabudovanými RFID prvky). Další dvě schémata jsou založena na atributovém způsobu ověření, tj. schémata umožňují anonymně prokázat vlastnictví atributů uživatele, jako je věk, občanství a pohlaví. Zatím co jedno schéma implementuje efektivní revokační a identifikační mechanismy, druhé schéma poskytuje nejrychlejší verifikaci držení uživatelských atributů ze všech současných řešení. Poslední, čtvrté schéma reprezentuje schéma krátkého skupinového podpisu pro scénář sběru dat. Schémata sběru dat se používají pro bezpečný a spolehlivý přenos dat ze vzdálených uzlů do řídící jednotky. S rostoucím významem chytrých měřičů v energetice, inteligentních zařízení v domácnostech a rozličných senzorových sítí, se potřeba bezpečných systémů sběru dat stává velmi naléhavou. Tato schémata musí podporovat nejen standardní bezpečnostní funkce, jako je důvěrnost a autentičnost přenášených dat, ale také funkce nové, jako je silná ochrana soukromí a identity uživatele či identifikace škodlivých uživatelů. Navržená schémata jsou prokazatelně bezpečná a nabízí celou řadu funkcí rozšiřující ochranu soukromí a identity uživatele, jmenovitě se pak jedná o zajištění anonymity, nesledovatelnosti a nespojitelnosti jednotlivých relací uživatele. Kromě úplné kryptografické specifikace a bezpečnostní analýzy navržených schémat, obsahuje tato práce také výsledky měření implementací jednotlivých schémat na v současnosti nejpoužívanějších zařízeních v oblasti řízení přístupu a sběru dat.The doctoral thesis deals with privacy-preserving cryptographic schemes in access control and data collection areas. Currently, card-based physical access control systems are used by most people on a daily basis, for example, at work, in public transportation and at hotels. However, these systems have often very poor cryptographic protection. For instance, user identifiers and keys can be easily eavesdropped and counterfeited. Furthermore, privacy-preserving features are almost missing and, therefore, user’s movement and behavior can by easily tracked. Service providers (and even eavesdroppers) can profile users, know what they do, where they go, and what they are interested in. In order to improve this state, we propose four novel cryptographic schemes based on efficient zero-knowledge proofs and elliptic curve cryptography. In particular, the thesis presents three novel privacy-friendly authentication schemes for access control and one for data collection application scenarios. The first scheme supports distributed multi-device authentication with multiple Radio-Frequency IDentification (RFID) user’s devices. This feature is particularly important in applications for controlling access to dangerous areas where the presence of protective equipment is checked during each access control session. The other two presented schemes use attribute-based approach to protect user’s privacy, i.e. these schemes allow users to anonymously prove the ownership of their attributes, such as age, citizenship, and gender. While one of our scheme brings efficient revocation and identification mechanisms, the other one provides the fastest authentication phase among the current state of the art solutions. The last (fourth) proposed scheme is a novel short group signature scheme for data collection scenarios. Data collection schemes are used for secure and reliable data transfer from multiple remote nodes to a central unit. With the increasing importance of smart meters in energy distribution, smart house installations and various sensor networks, the need for secure data collection schemes becomes very urgent. Such schemes must provide standard security features, such as confidentiality and authenticity of transferred data, as well as novel features, such as strong protection of user’s privacy and identification of malicious users. The proposed schemes are provably secure and provide the full set of privacy-enhancing features, namely anonymity, untraceability and unlinkability of users. Besides the full cryptographic specification and security analysis, we also show the results of our implementations on devices commonly used in access control and data collection applications.

    Proposal and evaluation of authentication protocols for Smart Grid networks

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2018.Uma rede Smart Grid (ou rede elétrica inteligente) representa a evolução das redes elétricas tradicionais, tornada possível graças à integração das tecnologias da informação e das comunicações com a infraestrutura elétrica. Esta integração propicia o surgimento de novos serviços, tornando a rede elétrica mais eficiente, gerando também novos desafios a serem atendidos, dentre eles a segurança do sistema. A rede SG deve garantir a confiabilidade, a integridade e a privacidade dos dados armazenados ou em transito pelo sistema, o que leva à necessidade de autenticação e controle de acesso, obrigando a todo usuário ou dispositivo a se autenticar e a realizar somente operações autorizadas. A autenticação de usuários e dispositivos é um processo muito importante para a rede SG, e os protocolos usados para esse fim devem ser capazes de proteção contra possiveis ataques (por exemplo, Man-in-the-Middle - MITM, repetição, Denegação de Serviço - DoS). Por outro lado, a autorização é tratada em conjunto com a autenticação e relacionada com as politicas de controle de acesso do sistema. Uma parte essencial para criar os protocolos de autenticação seguros envolve os esquemas de ciframento. O uso de um ou a combinação de vários esquemas afeta diretamente o desempenho do protocolo. Cada dia novos esquemas são propostos, e seu emprego nos protocolos de autenticação melhora o desempenho do sistema em comparação aos protocolos já propostos no mesmo cenário. Neste trabalho são propostos 3 (três) protocolos de autenticação seguros e de custo adequado para os cenários descritos a seguir: - Autenticação dos empregados das empresas de fornecimento de energia que procuram acesso ao sistema de forma remota; - Autenticação de Smart Meters numa Infraestrutura de medição avançada (AMI, do inglês Advanced Metering Infrastructure) baseada em nuvem computacional; e - Autenticação de veículos elétricos em uma rede V2G (do inglês, Vehicle-to-Grid). Cada um dos cenários tem caraterísticas particulares que são refletidas no projeto dos protocolos propostos. Além disso, todos os protocolos propostos neste trabalho garantem a autenticação mutua entre todas as entidades e a proteção da privacidade, confidencialidade e integridade dos dados do sistema. Uma comparação dos custos de comunicação e computação é apresentada entre os protocolos propostos neste trabalho e protocolos desenvolvidos por outros autores para cada um dos cenários. Os resultados das comparações mostram que os protocolos propostos neste trabalho têm, na maioria dos casos, o melhor desempenho computacional e de comunicações, sendo assim uma ótima escolha para a sua implementação nas redes SG. A validação formal dos protocolos propostos por meio da ferramenta AVISPA é realizada, permitindo verificar o atendimento a requisitos de segurança.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).A Smart Grid network (or inteligent electrical network) represents the evolution of traditional electrical networks, made possible due to the integration of information and communication technologies with the electrical power grid. This integration generates new services and improves the efficiency of the electrical power grid, while new challenges appear and must be solved, including the security of the system. The SG network must assure reliability, integrity and privacy of the data stored or in trnsit in the system, leading to the need for authentication and access control, thus all users and devices must authenticate and accomplish only authorized operations. The authentication of users and devices is a very important process for the SG network, and the protocols used for this task must be able to protect against possible attacks (for example, Man- in-the-Middle - MITM, repetição, Denegação de Serviço – DoS). On the other hand, authorization is treated jointly with authentication and related to policies of access control to the system. An essential part of creating secure authentication protocols involves encryption schemes. The use of one or the combination of several schemes directly affects protocol performance. Each day new schemas are proposed, and their utilization in the authentication protocols improves the performance of the system compared to the protocols already proposed in the same scenario. In this work 3 (three) secure and cost-effective authentication protocols are proposed, for the following scenarios: - Authentication of employees of energy suply enterprises, looking for remote or local access to the system; - Authentication of Smart Meters in an Advanced Metering Infrastructure based on cloud computing; and - Authentication of electrical vehicles in a V2G (“Vehicle-to-Grid”) network. Each scenario has specific characteristics, that are reflected on the design of the proposed protocols. Moreover, such protocols assure mutual authentication among entities as well as the protection of privacy, confidentiality and integrity of system data. A comparison considering communication and computing costs is presented, involving proposed protocols and other previously published protocols, for each scenario. The results show that the proposed protocols have, in most cases, the best performance, thus constituting good choices for future implementation in SG networks. The formal validation of the proposed protocols by the use of AVISPA tool is realized, allowing to verify the compliance with security requirements

    Intelligent conditional collaborative private data sharing

    Get PDF
    With the advent of distributed systems, secure and privacy-preserving data sharing between different entities (individuals or organizations) becomes a challenging issue. There are several real-world scenarios in which different entities are willing to share their private data only under certain circumstances, such as sharing the system logs when there is indications of cyber attack in order to provide cyber threat intelligence. Therefore, over the past few years, several researchers proposed solutions for collaborative data sharing, mostly based on existing cryptographic algorithms. However, the existing approaches are not appropriate for conditional data sharing, i.e., sharing the data if and only if a pre-defined condition is satisfied due to the occurrence of an event. Moreover, in case the existing solutions are used in conditional data sharing scenarios, the shared secret will be revealed to all parties and re-keying process is necessary. In this work, in order to address the aforementioned challenges, we propose, a “conditional collaborative private data sharing” protocol based on Identity-Based Encryption and Threshold Secret Sharing schemes. In our proposed approach, the condition based on which the encrypted data will be revealed to the collaborating parties (or a central entity) could be of two types: (i) threshold, or (ii) pre-defined policy. Supported by thorough analytical and experimental analysis, we show the effectiveness and performance of our proposal

    Contributions to secret sharing and other distributed cryptosystems

    Get PDF
    The present thesis deals with primitives related to the eld of distributed cryptography. First, we study signcryption schemes, which provide at the same time the functionalities of encryption and signature, where the unsigncryption operation is distributed. We consider this primitive from a theoretical point of view and set a security framework for it. Then, we present two signcryption schemes with threshold unsigncryption, with di erent properties. Furthermore, we use their authenticity property to apply them in the development of a di erent primitive: digital signatures with distributed veri cation. The second block of the thesis deals with the primitive of multi-secret sharing schemes. After stating some e ciency limitations of multi-secret sharing schemes in an information-theoretic scenario, we present several multi-secret sharing schemes with provable computational security. Finally, we use the results in multi-secret sharing schemes to generalize the traditional framework of distributed cryptography (with a single policy of authorized subsets) into a multipolicy setting, and we present both a multi-policy distributed decryption scheme and a multi-policy distributed signature scheme. Additionally, we give a short outlook on how to apply the presented multi-secret sharing schemes in the design of other multi-policy cryptosystems, like the signcryption schemes considered in this thesis. For all the schemes proposed throughout the thesis, we follow the same formal structure. After de ning the protocols of the primitive and the corresponding security model, we propose the new scheme and formally prove its security, by showing a reduction to some computationally hard mathematical problem.Avui en dia les persones estan implicades cada dia més en diferents activitats digitals tant en la seva vida professional com en el seu temps lliure. Molts articles de paper, com diners i tiquets, estan sent reemplaçats més i més per objectes digitals. La criptografia juga un paper crucial en aquesta transformació, perquè proporciona seguretat en la comunicació entre els diferents participants que utilitzen un canal digital. Depenent de la situació específica, alguns requisits de seguretat en la comunicació poden incloure privacitat (o confidencialitat), autenticitat, integritat o no-repudi. En algunes situacions, repartir l'operació secreta entre un grup de participants fa el procés més segur i fiable que quan la informació secreta està centralitzada en un únic participant; la criptografia distribuïda és l’àrea de la criptografia que estudia aquestes situacions. Aquesta tesi tracta de primitives relacionades amb el camp de la criptografia distribuïda. Primer, estudiem esquemes “signcryption”, que ofereixen a la vegada les funcionalitats de xifrat i signatura, on l'operació de “unsigncryption” està distribuïda. Considerem aquesta primitiva des d’un punt de vista teòric i establim un marc de seguretat per ella. Llavors, presentem dos esquemes “signcryption” amb operació de “unsigncryption” determinada per una estructura llindar, cada un amb diferents propietats. A més, utilitzem la seva propietat d’autenticitat per desenvolupar una nova primitiva: signatures digitals amb verificació distribuïda. El segon bloc de la tesi tracta la primitiva dels esquemes de compartició de multi-secrets. Després de demostrar algunes limitacions en l’eficiència dels esquemes de compartició de multi-secrets en un escenari de teoria de la informació, presentem diversos esquemes de compartició de multi-secrets amb seguretat computacional demostrable. Finalment, utilitzem els resultats obtinguts en els esquemes de compartició de multi-secrets per generalitzar el paradigma tradicional de la criptografia distribuïda (amb una única política de subconjunts autoritzats) a un marc multi-política, i presentem un esquema de desxifrat distribuït amb multi-política i un esquema de signatura distribuïda amb multi-política. A més, donem indicacions de com es poden aplicar els nostres esquemes de compartició de multi-secrets en el disseny d’altres criptosistemes amb multi-política, com per exemple els esquemes “signcryption” considerats en aquesta tesi. Per tots els esquemes proposats al llarg d’aquesta tesi, seguim la mateixa estructura formal. Després de definir els protocols de la primitiva primitius i el model de seguretat corresponent, proposem el nou esquema i demostrem formalment la seva seguretat, mitjançant una reducció a algun problema matemàtic computacionalment difícil

    Declarative design and enforcement for secure cloud applications

    Get PDF
    The growing demands of users and industry have led to an increase in both size and complexity of deployed software in recent years. This tendency mainly stems from a growing number of interconnected mobile devices and from the huge amounts of data that is collected every day by a growing number of sensors and interfaces. Such increase in complexity imposes various challenges -- not only in terms of software correctness, but also with respect to security. This thesis addresses three complementary approaches to cope with the challenges: (i) appropriate high-level abstractions and verifiable translation methods to executable applications in order to guarantee flawless implementations, (ii) strong cryptographic mechanisms in order to realize the desired security goals, and (iii) convenient methods in order to incentivize the correct usage of existing techniques and tools. In more detail, the thesis presents two frameworks for the declarative specification of functionality and security, together with advanced compilers for the verifiable translation to executable applications. Moreover, the thesis presents two cryptographic primitives for the enforcement of cloud-based security properties: homomorphic message authentication codes ensure the correctness of evaluating functions over data outsourced to unreliable cloud servers; and efficiently verifiable non-interactive zero-knowledge proofs convince verifiers of computation results without the verifiers having access to the computation input.Die wachsenden Anforderungen von Seiten der Industrie und der Endbenutzer verlangen nach immer komplexeren Softwaresystemen -- größtenteils begründet durch die stetig wachsende Zahl mobiler Geräte und die damit wachsende Zahl an Sensoren und erfassten Daten. Mit wachsender Software-Komplexität steigen auch die Herausforderungen an Korrektheit und Sicherheit. Die vorliegende Arbeit widmet sich diesen Herausforderungen in Form dreier komplementärer Ansätze: (i) geeignete Abstraktionen und verifizierbare Übersetzungsmethoden zu ausführbaren Anwendungen, die fehlerfreie Implementierungen garantieren, (ii) starke kryptographische Mechanismen, um die spezifizierten Sicherheitsanforderungen effizient und korrekt umzusetzen, und (iii) zweckmäßige Methoden, die eine korrekte Benutzung existierender Werkzeuge und Techniken begünstigen. Diese Arbeit stellt zwei neuartige Abläufe vor, die verifizierbare Übersetzungen von deklarativen Spezifikationen funktionaler und sicherheitsrelevanter Ziele zu ausführbaren Cloud-Anwendungen ermöglichen. Darüber hinaus präsentiert diese Arbeit zwei kryptographische Primitive für sichere Berechnungen in unzuverlässigen Cloud-Umgebungen. Obwohl die Eingabedaten der Berechnungen zuvor in die Cloud ausgelagert wurden und zur Verifikation der Berechnungen nicht mehr zur Verfügung stehen, ist es möglich, die Korrektheit der Ergebnisse in effizienter Weise zu überprüfen

    Security and Privacy Preservation in Mobile Crowdsensing

    Get PDF
    Mobile crowdsensing (MCS) is a compelling paradigm that enables a crowd of individuals to cooperatively collect and share data to measure phenomena or record events of common interest using their mobile devices. Pairing with inherent mobility and intelligence, mobile users can collect, produce and upload large amounts of data to service providers based on crowdsensing tasks released by customers, ranging from general information, such as temperature, air quality and traffic condition, to more specialized data, such as recommended places, health condition and voting intentions. Compared with traditional sensor networks, MCS can support large-scale sensing applications, improve sensing data trustworthiness and reduce the cost on deploying expensive hardware or software to acquire high-quality data. Despite the appealing benefits, however, MCS is also confronted with a variety of security and privacy threats, which would impede its rapid development. Due to their own incentives and vulnerabilities of service providers, data security and user privacy are being put at risk. The corruption of sensing reports may directly affect crowdsensing results, and thereby mislead customers to make irrational decisions. Moreover, the content of crowdsensing tasks may expose the intention of customers, and the sensing reports might inadvertently reveal sensitive information about mobile users. Data encryption and anonymization techniques can provide straightforward solutions for data security and user privacy, but there are several issues, which are of significantly importance to make MCS practical. First of all, to enhance data trustworthiness, service providers need to recruit mobile users based on their personal information, such as preferences, mobility pattern and reputation, resulting in the privacy exposure to service providers. Secondly, it is inevitable to have replicate data in crowdsensing reports, which may possess large communication bandwidth, but traditional data encryption makes replicate data detection and deletion challenging. Thirdly, crowdsensed data analysis is essential to generate crowdsensing reports in MCS, but the correctness of crowdsensing results in the absence of malicious mobile users and service providers become a huge concern for customers. Finally yet importantly, even if user privacy is preserved during task allocation and data collection, it may still be exposed during reward distribution. It further discourage mobile users from task participation. In this thesis, we explore the approaches to resolve these challenges in MCS. Based on the architecture of MCS, we conduct our research with the focus on security and privacy protection without sacrificing data quality and users' enthusiasm. Specifically, the main contributions are, i) to enable privacy preservation and task allocation, we propose SPOON, a strong privacy-preserving mobile crowdsensing scheme supporting accurate task allocation. In SPOON, the service provider recruits mobile users based on their locations, and selects proper sensing reports according to their trust levels without invading user privacy. By utilizing the blind signature, sensing tasks are protected and reports are anonymized. In addition, a privacy-preserving credit management mechanism is introduced to achieve decentralized trust management and secure credit proof for mobile users; ii) to improve communication efficiency while guaranteeing data confidentiality, we propose a fog-assisted secure data deduplication scheme, in which a BLS-oblivious pseudo-random function is developed to enable fog nodes to detect and delete replicate data in sensing reports without exposing the content of reports. Considering the privacy leakages of mobile users who report the same data, the blind signature is utilized to hide users' identities, and chameleon hash function is leveraged to achieve contribution claim and reward retrieval for anonymous greedy mobile users; iii) to achieve data statistics with privacy preservation, we propose a privacy-preserving data statistics scheme to achieve end-to-end security and integrity protection, while enabling the aggregation of the collected data from multiple sources. The correctness verification is supported to prevent the corruption of the aggregate results during data transmission based on the homomorphic authenticator and the proxy re-signature. A privacy-preserving verifiable linear statistics mechanism is developed to realize the linear aggregation of multiple crowdsensed data from a same device and the verification on the correctness of aggregate results; and iv) to encourage mobile users to participating in sensing tasks, we propose a dual-anonymous reward distribution scheme to offer the incentive for mobile users and privacy protection for both customers and mobile users in MCS. Based on the dividable cash, a new reward sharing incentive mechanism is developed to encourage mobile users to participating in sensing tasks, and the randomization technique is leveraged to protect the identities of customers and mobile users during reward claim, distribution and deposit

    Securing Deployed Cryptographic Systems

    Get PDF
    In 2015 more than 150 million records and $400 billion were lost due to publicly-reported criminal and nation-state cyberattacks in the United States alone. The failure of our existing security infrastructure motivates the need for improved technologies, and cryptography provides a powerful tool for doing this. There is a misperception that the cryptography we use today is a "solved problem" and the real security weaknesses are in software or other areas of the system. This is, in fact, not true at all, and over the past several years we have seen a number of serious vulnerabilities in the cryptographic pieces of systems, some with large consequences. This thesis will discuss three aspects of securing deployed cryptographic systems. We will first explore the evaluation of systems in the wild, using the example of how to efficiently and effectively recover user passwords submitted over TLS encrypted with RC4, with applications to many methods of web authentication as well as the popular IMAP protocol for email. We will then address my work on developing tools to design and create cryptographic systems and bridge the often large gap between theory and practice by introducing AutoGroup+, a tool that automatically translates cryptographic schemes from the mathematical setting used in the literature to that typically used in practice, giving both a secure and optimal output. We will conclude with an exploration of how to actually build real world deployable systems by discussing my work on developing decentralized anonymous credentials in order to increase the security and deployability of existing anonymous credentials systems

    Data security in cloud storage services

    Get PDF
    Cloud Computing is considered to be the next-generation architecture for ICT where it moves the application software and databases to the centralized large data centers. It aims to offer elastic IT services where clients can benefit from significant cost savings of the pay-per-use model and can easily scale up or down, and do not have to make large investments in new hardware. However, the management of the data and services in this cloud model is under the control of the provider. Consequently, the cloud clients have less control over their outsourced data and they have to trust cloud service provider to protect their data and infrastructure from both external and internal attacks. This is especially true with cloud storage services. Nowadays, users rely on cloud storage as it offers cheap and unlimited data storage that is available for use by multiple devices (e.g. smart phones, tablets, notebooks, etc.). Besides famous cloud storage providers, such as Amazon, Google, and Microsoft, more and more third-party cloud storage service providers are emerging. These services are dedicated to offering more accessible and user friendly storage services to cloud customers. Examples of these services include Dropbox, Box.net, Sparkleshare, UbuntuOne or JungleDisk. These cloud storage services deliver a very simple interface on top of the cloud storage provided by storage service providers. File and folder synchronization between different machines, sharing files and folders with other users, file versioning as well as automated backups are the key functionalities of these emerging cloud storage services. Cloud storage services have changed the way users manage and interact with data outsourced to public providers. With these services, multiple subscribers can collaboratively work and share data without concerns about their data consistency, availability and reliability. Although these cloud storage services offer attractive features, many customers have not adopted these services. Since data stored in these services is under the control of service providers resulting in confidentiality and security concerns and risks. Therefore, using cloud storage services for storing valuable data depends mainly on whether the service provider can offer sufficient security and assurance to meet client requirements. From the way most cloud storage services are constructed, we can notice that these storage services do not provide users with sufficient levels of security leading to an inherent risk on users\u27 data from external and internal attacks. These attacks take the form of: data exposure (lack of data confidentiality); data tampering (lack of data integrity); and denial of data (lack of data availability) by third parties on the cloud or by the cloud provider himself. Therefore, the cloud storage services should ensure the data confidentiality in the following state: data in motion (while transmitting over networks), data at rest (when stored at provider\u27s disks). To address the above concerns, confidentiality and access controllability of outsourced data with strong cryptographic guarantee should be maintained. To ensure data confidentiality in public cloud storage services, data should be encrypted data before it is outsourced to these services. Although, users can rely on client side cloud storage services or software encryption tools for encrypting user\u27s data; however, many of these services fail to achieve data confidentiality. Box, for example, does not encrypt user files via SSL and within Box servers. Client side cloud storage services can intentionally/unintentionally disclose user decryption keys to its provider. In addition, some cloud storage services support convergent encryption for encrypting users\u27 data exposing it to “confirmation of a file attack. On the other hand, software encryption tools use full-disk encryption (FDE) which is not feasible for cloud-based file sharing services, because it encrypts the data as virtual hard disks. Although encryption can ensure data confidentiality; however, it fails to achieve fine-grained access control over outsourced data. Since, public cloud storage services are managed by un-trusted cloud service provider, secure and efficient fine-grained access control cannot be realized through these services as these policies are managed by storage services that have full control over the sharing process. Therefore, there is not any guarantee that they will provide good means for efficient and secure sharing and they can also deduce confidential information about the outsourced data and users\u27 personal information. In this work, we would like to improve the currently employed security measures for securing data in cloud store services. To achieve better data confidentiality for data stored in the cloud without relying on cloud service providers (CSPs) or putting any burden on users, in this thesis, we designed a secure cloud storage system framework that simultaneously achieves data confidentiality, fine-grained access control on encrypted data and scalable user revocation. This framework is built on a third part trusted (TTP) service that can be employed either locally on users\u27 machine or premises, or remotely on top of cloud storage services. This service shall encrypts users data before uploading it to the cloud and decrypts it after downloading from the cloud; therefore, it remove the burden of storing, managing and maintaining encryption/decryption keys from data owner\u27s. In addition, this service only retains user\u27s secret key(s) not data. Moreover, to ensure high security for these keys, it stores them on hardware device. Furthermore, this service combines multi-authority ciphertext policy attribute-based encryption (CP-ABE) and attribute-based Signature (ABS) for achieving many-read-many-write fine-grained data access control on storage services. Moreover, it efficiently revokes users\u27 privileges without relying on the data owner for re-encrypting massive amounts of data and re-distributing the new keys to the authorized users. It removes the heavy computation of re-encryption from users and delegates this task to the cloud service provider (CSP) proxy servers. These proxy servers achieve flexible and efficient re-encryption without revealing underlying data to the cloud. In our designed architecture, we addressed the problem of ensuring data confidentiality against cloud and against accesses beyond authorized rights. To resolve these issues, we designed a trusted third party (TTP) service that is in charge of storing data in an encrypted format in the cloud. To improve the efficiency of the designed architecture, the service allows the users to choose the level of severity of the data and according to this level different encryption algorithms are employed. To achieve many-read-many-write fine grained access control, we merge two algorithms (multi-authority ciphertext policy attribute-based encryption (MA- CP-ABE) and attribute-based Signature (ABS)). Moreover, we support two levels of revocation: user and attribute revocation so that we can comply with the collaborative environment. Last but not least, we validate the effectiveness of our design by carrying out a detailed security analysis. This analysis shall prove the correctness of our design in terms of data confidentiality each stage of user interaction with the cloud

    Efficient Zero-Knowledge Proofs on Signed Data with Applications to Verifiable Computation on Data Streams

    Get PDF
    We study the problem of privacy-preserving proofs on streamed authenticated data. In this setting, a server receives a continuous stream of data from a trusted data provider, and is requested to prove computations over the data to third parties in a correct and private way. In particular, the third party learns no information on the data beyond the validity of claimed results. A challenging requirement here, is that the third party verifies the validity with respect to the specific data authenticated by the provider, while communicating only with the server. This problem is motivated by various application areas, ranging from stock-market monitoring and prediction services; to the publication of government-ran statistics on large healthcare databases. All of these applications require a reliable and scalable solution, in order to see practical adoption. In this paper, we identify and formalize a key primitive allowing one to achieve the above: homomorphic signatures which evaluate non-deterministic computations (HSNP). We provide a generic construction for an HSNP evaluating universal relations; instantiate the construction; and implement a library for HSNP. This in turn allows us to build SPHINX: a system for proving arbitrary computations over streamed authenticated data in a privacy-preserving manner. SPHINX improves significantly over alternative solutions for this model. For instance, compared to corresponding solutions based on Marlin (Eurocrypt\u2720), the proof generation of SPHINX is between 15×15\times and 1300×1\,300\times faster for various computations used in sliding-window statistics
    corecore