431,265 research outputs found

    The Web Engineering Security (WES) methodology

    Get PDF
    The World Wide Web has had a significant impact on basic operational economical components in global information rich civilizations. This impact is forcing organizations to provide justification for security from a business case perspective and to focus on security from a web application development environment perspective. This increased focus on security was the basis of a business case discussion and led to the acquisition of empirical evidence gathered from a high level Web survey and more detailed industry surveys to analyse security in the Web application development environment. Along with this information, a collection of evidence from relevant literature was also gathered. Individual aspects of the data gathered in the previously mentioned activities contributed to the proposal of the Essential Elements (EE) and the Security Criteria for Web Application Development (SCWAD). The Essential Elements present the idea that there are essential, basic organizational elements that need to be identified, defined and addressed before examining security aspects of a Web Engineering Development process. The Security Criteria for Web Application Development identifies criteria that need to be addressed by a secure Web Engineering process. Both the EE and SCWAD are presented in detail along with relevant justification of these two elements to Web Engineering. SCWAD is utilized as a framework to evaluate the security of a representative selection of recognized software engineering processes used in Web Engineering application development. The software engineering processes appraised by SCWAD include: the Waterfall Model, the Unified Software Development Process (USD), Dynamic Systems Development Method (DSDM) and eXtreme Programming (XP). SCWAD is also used to assess existing security methodologies which are comprised of the Orion Strategy; Survivable / Viable IS approaches; Comprehensive Lightweight Application Security Process (CLASP) and Microsoft’s Trust Worthy Computing Security Development Lifecycle. The synthesis of information provided by both the EE and SCWAD were used to develop the Web Engineering Security (WES) methodology. WES is a proactive, flexible, process neutral security methodology with customizable components that is based on empirical evidence and used to explicitly integrate security throughout an organization’s chosen application development process. In order to evaluate the practical application of the EE, SCWAD and the WES methodology, two case studies were conducted during the course of this research. The first case study describes the application of both the EE and SCWAD to the Hunterian Museum and Art Gallery’s Online Photo Library (HOPL) Internet application project. The second case study presents the commercial implementation of the WES methodology within a Global Fortune 500 financial service sector organization. The assessment of the WES methodology within the organization consisted of an initial survey establishing current security practices, a follow-up survey after changes were implemented and an overall analysis of the security conditions assigned to projects throughout the life of the case study

    Semantic Web technologies in software engineering

    Full text link
    Over the years, the software engineering community has developed various tools to support the specification, development, and maintainance of software. Many of these tools use proprietary data formats to store artifacts which hamper interoperability. However, the Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries. Ontologies are used define the concepts in the domain of discourse and their relationships and as such provide the formal vocabulary applications use to exchange data. Beside the Web, the technologies developed for the Semantic Web have proven to be useful also in other domains, especially when data is exchanged between applications from different parties. Software engineering is one of these domains in which recent research shows that Semantic Web technologies are able to reduce the barriers of proprietary data formats and enable interoperability. In this tutorial, we present Semantic Web technologies and their application in software engineering. We discuss the current status of ontologies for software entities, bug reports, or change requests, as well as semantic representations for software and its documentation. This way, architecture, design, code, or test models can be shared across application boundaries enabling a seamless integration of engineering results

    Clinical software development for the Web: lessons learned from the BOADICEA project.

    Get PDF
    BACKGROUND: In the past 20 years, society has witnessed the following landmark scientific advances: (i) the sequencing of the human genome, (ii) the distribution of software by the open source movement, and (iii) the invention of the World Wide Web. Together, these advances have provided a new impetus for clinical software development: developers now translate the products of human genomic research into clinical software tools; they use open-source programs to build them; and they use the Web to deliver them. Whilst this open-source component-based approach has undoubtedly made clinical software development easier, clinical software projects are still hampered by problems that traditionally accompany the software process. This study describes the development of the BOADICEA Web Application, a computer program used by clinical geneticists to assess risks to patients with a family history of breast and ovarian cancer. The key challenge of the BOADICEA Web Application project was to deliver a program that was safe, secure and easy for healthcare professionals to use. We focus on the software process, problems faced, and lessons learned. Our key objectives are: (i) to highlight key clinical software development issues; (ii) to demonstrate how software engineering tools and techniques can facilitate clinical software development for the benefit of individuals who lack software engineering expertise; and (iii) to provide a clinical software development case report that can be used as a basis for discussion at the start of future projects. RESULTS: We developed the BOADICEA Web Application using an evolutionary software process. Our approach to Web implementation was conservative and we used conventional software engineering tools and techniques. The principal software development activities were: requirements, design, implementation, testing, documentation and maintenance. The BOADICEA Web Application has now been widely adopted by clinical geneticists and researchers. BOADICEA Web Application version 1 was released for general use in November 2007. By May 2010, we had > 1200 registered users based in the UK, USA, Canada, South America, Europe, Africa, Middle East, SE Asia, Australia and New Zealand. CONCLUSIONS: We found that an evolutionary software process was effective when we developed the BOADICEA Web Application. The key clinical software development issues identified during the BOADICEA Web Application project were: software reliability, Web security, clinical data protection and user feedback.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Current usage of Component based Principles for Developing Web Applications with Frameworks: A Literature Review

    Get PDF
    Component based software development has become a very popular paradigm in many software engineering branches. In the early phase of Web 2.0 appearance, it was also popular for web application development. From the analyzed papers, between this period and today, use of component based techniques for web application development was somewhat slowed down, however, the recent development indicates a comeback. Most of all it is apparent with W3C’s component web working group. In this article we want to investigate the current state of web application development with component approach. Most of all we are interested in which way components are used, which web development frameworks are being used, for which domains is component based web development most popular and successful, etc. How many current web development frameworks explicitly refer to component-based approach? To answer this question, we performed a literature review

    A model driven architecture approach to web development

    Get PDF
    The rise of the number and complexity of web applications is ever increasing. Web engineers need advanced development methods to build better systems and to maintain them in an easy way. Model-Driven Architecture (MDA) is an important trend in the software engineering field based on both models and its transformations to automatically generate code. This paper describes a a methodology for web application development, providing a process based on MDA which provides an effective engineering approach to reduce effort. It consists of defining models from metamodels at platform- independent and platform-specific levels, from which source code is automatically generated

    PROSES MODELING DALAM APLIKASI WEB

    Get PDF
    In a rapid web development, create a new challenge in the capacity of the complex process of setting and service users and many organizations, by linking the software provided by different organizations. Integrated web application basically allows a dialogue with the user system is mediated by the web service, which facilitates interaction between the process control systems that allows the implementation of the required business coverage. In this paper gives the description of a web engineering method of high-level specification of the display business application processes. Processes and services facilitated by the web application to facilitate the high-level modeling, code generation techniques in full automation has been applied in a conventional webapplication, again widening the benefits of software engineering force, which was implemented with the CASE tool. Keywords: modelling, web, development, application

    IFML-based Model-Driven Front-End Modernization

    Get PDF
    Since late 90’s the use of web application frameworks has been the default choice to develop software applications inside the web domain. In parallel, Model Driven Web Engineering approaches have been defined and successfully applied to reduce the effort of web application development and reuse, fostering the independence of the implementation technology. A direct result of the success of these approaches is the elaboration of the Interaction Flow Modeling Language (IFML) as an Object Management Group (OMG) standard. However, the real fact is that there is a huge amount of legacy web systems that were developed before MDWE approaches were mainstream. The work presented herein tries to leverage IFML to modernize the front-ends of framework-based legacy web applications. In concrete, a systematic model driven reverse engineering process to generate an IFML representation from such applications is presented

    Survey of Technologies for Web Application Development

    Full text link
    Web-based application developers face a dizzying array of platforms, languages, frameworks and technical artifacts to choose from. We survey, classify, and compare technologies supporting Web application development. The classification is based on (1) foundational technologies; (2)integration with other information sources; and (3) dynamic content generation. We further survey and classify software engineering techniques and tools that have been adopted from traditional programming into Web programming. We conclude that, although the infrastructure problems of the Web have largely been solved, the cacophony of technologies for Web-based applications reflects the lack of a solid model tailored for this domain.Comment: 43 page
    corecore