9 research outputs found

    Challenges and Solution for Identification of Plant Disease Using Machine Learning & IoT

    Get PDF
    Internet of Thing (IoT) is a groundbreaking technology that has been introduced in the field of agriculture to improve the quality and quantity of food production. As agriculture plays a vital role in feeding most of the world\u27s population, the increasing demand for food has led to a rise in food grain production. The identification of plant diseases is a critical task for farmers and agronomists as it enables them to take proactive measures to prevent the spread of diseases, protect crops, and maximize yields. Traditional methods of plant disease detection involve visual inspections by experts, which can be time-consuming and often subject to human error. However, with technological advancements, IoT and Machine Learning (ML) has emerged as promising solution for automating and improving plant disease identification. This paper explores the challenges and solutions for identifying plant diseases using IoT and ML. The challenges discussed include data collection, quality, scalability, and interpretability. The proposed solutions include using sensor networks, data pre-processing techniques, transfer learning, and explainable AI

    Reliable and Automatic Recognition of Leaf Disease Detection using Optimal Monarch Ant Lion Recurrent Learning

    Get PDF
    Around 7.5 billion people worldwide depend on agriculture production for their livelihood, making it an essential component in keeping life alive on the planet. Negative impacts are being caused on the agroecosystem due to the rapid increase in the use of chemicals to combat plant diseases. These chemicals include fungicides, bactericides, and insecticides. Both the quantity and quality of the output are impacted when there is a high-scale prevalence of diseases in crops. Plant diseases provide a significant obstacle for the agricultural industry, which has a negative impact on the growth of plants and the output of crops. The problem of early detection and diagnosis of diseases can be solved for the benefit of the farming community by employing a method that is both quick and reliable regularly. This article proposes a model for the detection and diagnosis of leaf infection called the Automatic Optimal Monarch AntLion Recurrent Learning (MALRL) model, which attains a greater authenticity. The design of a hybrid version of the Monarch Butter Fly optimization algorithm and the AntLion Optimization Algorithm is incorporated into the MALRL technique that has been proposed. In the leaf image, it is used to determine acceptable aspects of impacted regions. After that, the optimal characteristics are used to aid the Long Short Term Neural Network (LSTM) classifier to speed up the process of lung disease categorization. The experiment's findings are analyzed and compared to those of ANN, CNN, and DNN. The proposed method was successful in achieving a high level of accuracy when detecting leaf disease for images of healthy leaves in comparison to other conventional methods

    Characterising the agriculture 4.0 landscape - Emerging trends, challenges and opportunities

    Get PDF
    ReviewInvestment in technological research is imperative to stimulate the development of sustainable solutions for the agricultural sector. Advances in Internet of Things, sensors and sensor networks, robotics, artificial intelligence, big data, cloud computing, etc. foster the transition towards the Agriculture 4.0 era. This fourth revolution is currently seen as a possible solution for improving agricultural growth, ensuring the future needs of the global population in a fair, resilient and sustainable way. In this context, this article aims at characterising the current Agriculture 4.0 landscape. Emerging trends were compiled using a semi-automated process by analysing relevant scientific publications published in the past ten years. Subsequently, a literature review focusing these trends was conducted, with a particular emphasis on their applications in real environments. From the results of the study, some challenges are discussed, as well as opportunities for future research. Finally, a high-level cloud-based IoT architecture is presented, serving as foundation for designing future smart agricultural systems. It is expected that this work will positively impact the research around Agriculture 4.0 systems, providing a clear characterisation of the concept along with guidelines to assist the actors in a successful transition towards the digitalisation of the sectorinfo:eu-repo/semantics/publishedVersio

    IoT in smart communities, technologies and applications.

    Get PDF
    Internet of Things is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The Internet of Things (IoT) for Smart Cities has many different domains and draws upon various underlying systems for its operation, in this work, we provide a holistic coverage of the Internet of Things in Smart Cities by discussing the fundamental components that make up the IoT Smart City landscape, the technologies that enable these domains to exist, the most prevalent practices and techniques which are used in these domains as well as the challenges that deployment of IoT systems for smart cities encounter and which need to be addressed for ubiquitous use of smart city applications. It also presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things. Towards this end, a mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. Within the smart health domain of IoT smart cities, human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement compared to other approaches. Fall detection is one of the most important tasks in human activity recognition. With an increasingly aging world population and an inclination by the elderly to live alone, the need to incorporate dependable fall detection schemes in smart devices such as phones, watches has gained momentum. Therefore, differentiating between falls and activities of daily living (ADLs) has been the focus of researchers in recent years with very good results. However, one aspect within fall detection that has not been investigated much is direction and severity aware fall detection. Since a fall detection system aims to detect falls in people and notify medical personnel, it could be of added value to health professionals tending to a patient suffering from a fall to know the nature of the accident. In this regard, as a case study for smart health, four different experiments have been conducted for the task of fall detection with direction and severity consideration on two publicly available datasets. These four experiments not only tackle the problem on an increasingly complicated level (the first one considers a fall only scenario and the other two a combined activity of daily living and fall scenario) but also present methodologies which outperform the state of the art techniques as discussed. Lastly, future recommendations have also been provided for researchers

    Pertanika Journal of Science & Technology

    Get PDF

    Implementation and applications of harvest fleet route planning

    Get PDF
    In order to support the growing global population, it is necessary to increase food production efficiency and at the same time reduce its negative environmental impacts. This can be achieved by integrating diverse strategies from different scientific disciplines. As agriculture is becoming more data-driven by the use of technologies such as the Internet of Things, the efficiency in agricultural operations can be optimised in a sustainable manner. Some field operations, such as harvesting, are more complex and have higher potential for improvement than others, as they involve multiple and diverse vehicles with capacity constraints that require coordination. This can be achieved by optimised route planning, which is a combinatorial optimisation problem. Several studies have proposed different approaches to solve the problem. However, these studies have mainly a theoretical computer science perspective and lack the system perspective that covers the practical implementation and applications of optimised route planning in all field operations, being harvesting an important example to focus on. This requires an interdisciplinary approach, which is the aim of this Ph.D. project.The research of this Ph.D. study examined how Internet of Things technologies are applied in arable farming in general, and in particular in optimised route planning. The technology perspective of the reviewing process provided the necessary knowledge to address the physical implementation of a harvest fleet route planning tool that aims to minimise the total harvest time. From the environmental point of view, the risk of soil compaction resulting from vehicle traffic during harvest operations was assessed by comparing recorded vehicle data with the optimised solution of the harvest fleet route planning system. The results showed a reduction in traffic, which demonstrates that these optimisation tools can be part of the soil compaction mitigation strategy of a farm. And from the economic perspective, the optimised route planner of an autonomous field robot was employed to evaluate the economic consequences of altering the route in selective harvesting. The results presented different scenarios where selective harvest was not economically profitable. The results also identified some cases where selective harvest has the potential to become profitable depending on grain price differences and operational costs. In conclusion, these different perspectives to harvest fleet route planning showed the necessity of assessing future implementation and potential applications through interdisciplinarity

    Pertanika Journal of Science & Technology

    Get PDF

    Sinergías en la investigación en STEM

    Get PDF
    La Universidad, como centro de educación Superior, tiene objetivo la formación específica en cada rama del conocimiento, así como la generación y transferencia de conocimientos. Para estar en la vanguardia del conocimiento, la investigación es uno de los pilares fundamentales; la creación de nuevos conocimientos es el soporte científico y técnico necesario para la innovación y el avance. En este contexto, la Escuela Politécnica Superior (EPS) de la Universidad de Sevilla trata de promocionar la investigación a través de diversas actividades como son las Jornadas de Investigación, Desarrollo e Innovación, que en el curso 2021/22 han alcanzado su octava edición. En este evento, se presentan los avances en investigación en diversas ramas de la Ciencia y la Ingeniería, con participación de estudiantes de todos los niveles, así como del personal docente e investigador no solo de este centro, sino que contribuyen participantes de más de 8 países. El carácter multidisciplinar conlleva a establecer sinergias entre grupos de investigación de diferentes disciplinas, compaginando el conocimiento científico desde la investigación básica con la aplicada, además de aprovechar las diferentes instalaciones de investigación. La ciencia fundamental ayuda a comprender los fundamentos fenomenológicos, mientras que la ciencia aplicada se centra en los productos y desarrollos tecnológicos, destacando la necesidad de realizar una transferencia de conocimiento a la sociedad y los sectores industriales. Este libro recoge alguno de los trabajos presentados en las diversas ramas de conocimiento (Materiales y Ciencias para la Ingeniería, Proyectos de Química Industrial y Ambiental, Sistemas Inteligentes y Desarrollo de Productos, y Sistemas Industriales computarizados, robóticos y neuromórficos)

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts
    corecore