4,860 research outputs found

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    Cooperation between expert knowledge and data mining discovered knowledge: Lessons learned

    Get PDF
    Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types

    Adaptive Parameter Control Strategy for Ant-Miner Classification Algorithm

    Get PDF
    Pruning is the popular framework for preventing the dilemma of overfitting noisy data. This paper presents a new hybrid Ant-Miner classification algorithm and ant colony system (ACS), called ACS-AntMiner. A key aspect of this algorithm is the selection of an appropriate number of terms to be included in the classification rule. ACS-AntMiner introduces a new parameter called importance rate (IR) which is a pre-pruning criterion based on the probability (heuristic and pheromone) amount. This criterion is responsible for adding only the important terms to each rule, thus discarding noisy data. The ACS algorithm is designed to optimize the IR parameter during the learning process of the Ant-Miner algorithm. The performance of the proposed classifier is compared with related ant-mining classifiers, namely, Ant-Miner, CAnt-Miner, TACO-Miner, and Ant-Miner with a hybrid pruner across several datasets. Experimental results show that the proposed classifier significantly outperforms the other ant-mining classifiers

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Dynamic Rule Covering Classification in Data Mining with Cyber Security Phishing Application

    Get PDF
    Data mining is the process of discovering useful patterns from datasets using intelligent techniques to help users make certain decisions. A typical data mining task is classification, which involves predicting a target variable known as the class in previously unseen data based on models learnt from an input dataset. Covering is a well-known classification approach that derives models with If-Then rules. Covering methods, such as PRISM, have a competitive predictive performance to other classical classification techniques such as greedy, decision tree and associative classification. Therefore, Covering models are appropriate decision-making tools and users favour them carrying out decisions. Despite the use of Covering approach in data processing for different classification applications, it is also acknowledged that this approach suffers from the noticeable drawback of inducing massive numbers of rules making the resulting model large and unmanageable by users. This issue is attributed to the way Covering techniques induce the rules as they keep adding items to the rule’s body, despite the limited data coverage (number of training instances that the rule classifies), until the rule becomes with zero error. This excessive learning overfits the training dataset and also limits the applicability of Covering models in decision making, because managers normally prefer a summarised set of knowledge that they are able to control and comprehend rather a high maintenance models. In practice, there should be a trade-off between the number of rules offered by a classification model and its predictive performance. Another issue associated with the Covering models is the overlapping of training data among the rules, which happens when a rule’s classified data are discarded during the rule discovery phase. Unfortunately, the impact of a rule’s removed data on other potential rules is not considered by this approach. However, When removing training data linked with a rule, both frequency and rank of other rules’ items which have appeared in the removed data are updated. The impacted rules should maintain their true rank and frequency in a dynamic manner during the rule discovery phase rather just keeping the initial computed frequency from the original input dataset. In response to the aforementioned issues, a new dynamic learning technique based on Covering and rule induction, that we call Enhanced Dynamic Rule Induction (eDRI), is developed. eDRI has been implemented in Java and it has been embedded in WEKA machine learning tool. The developed algorithm incrementally discovers the rules using primarily frequency and rule strength thresholds. These thresholds in practice limit the search space for both items as well as potential rules by discarding any with insufficient data representation as early as possible resulting in an efficient training phase. More importantly, eDRI substantially cuts down the number of training examples scans by continuously updating potential rules’ frequency and strength parameters in a dynamic manner whenever a rule gets inserted into the classifier. In particular, and for each derived rule, eDRI adjusts on the fly the remaining potential rules’ items frequencies as well as ranks specifically for those that appeared within the deleted training instances of the derived rule. This gives a more realistic model with minimal rules redundancy, and makes the process of rule induction efficient and dynamic and not static. Moreover, the proposed technique minimises the classifier’s number of rules at preliminary stages by stopping learning when any rule does not meet the rule’s strength threshold therefore minimising overfitting and ensuring a manageable classifier. Lastly, eDRI prediction procedure not only priorities using the best ranked rule for class forecasting of test data but also restricts the use of the default class rule thus reduces the number of misclassifications. The aforementioned improvements guarantee classification models with smaller size that do not overfit the training dataset, while maintaining their predictive performance. The eDRI derived models particularly benefit greatly users taking key business decisions since they can provide a rich knowledge base to support their decision making. This is because these models’ predictive accuracies are high, easy to understand, and controllable as well as robust, i.e. flexible to be amended without drastic change. eDRI applicability has been evaluated on the hard problem of phishing detection. Phishing normally involves creating a fake well-designed website that has identical similarity to an existing business trustful website aiming to trick users and illegally obtain their credentials such as login information in order to access their financial assets. The experimental results against large phishing datasets revealed that eDRI is highly useful as an anti-phishing tool since it derived manageable size models when compared with other traditional techniques without hindering the classification performance. Further evaluation results using other several classification datasets from different domains obtained from University of California Data Repository have corroborated eDRI’s competitive performance with respect to accuracy, number of knowledge representation, training time and items space reduction. This makes the proposed technique not only efficient in inducing rules but also effective

    A Competency Mapping for Educational Institution: Expert System Approach

    Get PDF
    This paper presents the development of expert system to assist in the operation of competence management in educational institution. The knowledge based consists of a rule-based expert system for the competence management and subsequent performance assessment. It is generally recognized that an expert system can cope with many of the common problems relative with the operation and control of the competence management process. In this work an expert system is developed which emphasize on various steps involved in the competence management process. The knowledge acquisition to develop this expert system involved an exhaustive literature review on competence management operation and interviews with experienced deans and the competence managers. The development tool for this system is an expert system shell

    A knowledge engineering approach to the recognition of genomic coding regions

    Get PDF
    āđ„āļ”āđ‰āļ—āļļāļ™āļ­āļļāļ”āļŦāļ™āļļāļ™āļāļēāļĢāļ§āļīāļˆāļąāļĒāļˆāļēāļāļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŠāļļāļĢāļ™āļēāļĢāļĩ āļ›āļĩāļ‡āļšāļ›āļĢāļ°āļĄāļēāļ“ āļž.āļĻ.2556-255
    • â€Ķ
    corecore