955 research outputs found

    Web attack detection using ID3

    Get PDF
    Decision tree learning algorithms have been successfully used in knowledge discovery. They use induction in order to provide an appropriate classification of objects in terms of their attributes, inferring decision tree rules. This paper reports on the use of ID3 to Web attack detection. Even though simple, ID3 is sufficient to put apart a number of Web attacks, including a large proportion of their variants. It also surpasses existing methods: it portrays a higher true-positive detection rate and a lower false-positive one. The ID3 output classification rules that are easy to read and so computer officers are more likely to grasp the root of an attack, as well as extending the capabilities of the classifier.Applications in Artificial Intelligence - ApplicationsRed de Universidades con Carreras en Informática (RedUNCI

    Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers

    Full text link
    Machine Learning (ML) algorithms are used to train computers to perform a variety of complex tasks and improve with experience. Computers learn how to recognize patterns, make unintended decisions, or react to a dynamic environment. Certain trained machines may be more effective than others because they are based on more suitable ML algorithms or because they were trained through superior training sets. Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, in this paper we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers. In particular, we build a novel meta-classifier and train it to hack other classifiers, obtaining meaningful information about their training sets. This kind of information leakage can be exploited, for example, by a vendor to build more effective classifiers or to simply acquire trade secrets from a competitor's apparatus, potentially violating its intellectual property rights

    AVOIDIT IRS: An Issue Resolution System To Resolve Cyber Attacks

    Get PDF
    Cyber attacks have greatly increased over the years and the attackers have progressively improved in devising attacks against specific targets. Cyber attacks are considered a malicious activity launched against networks to gain unauthorized access causing modification, destruction, or even deletion of data. This dissertation highlights the need to assist defenders with identifying and defending against cyber attacks. In this dissertation an attack issue resolution system is developed called AVOIDIT IRS (AIRS). AVOIDIT IRS is based on the attack taxonomy AVOIDIT (Attack Vector, Operational Impact, Defense, Information Impact, and Target). Attacks are collected by AIRS and classified into their respective category using AVOIDIT.Accordingly, an organizational cyber attack ontology was developed using feedback from security professionals to improve the communication and reusability amongst cyber security stakeholders. AIRS is developed as a semi-autonomous application that extracts unstructured external and internal attack data to classify attacks in sequential form. In doing so, we designed and implemented a frequent pattern and sequential classification algorithm associated with the five classifications in AVOIDIT. The issue resolution approach uses inference to educate the defender on the plausible cyber attacks. The AIRS can work in conjunction with an intrusion detection system (IDS) to provide a heuristic to cyber security breaches within an organization. AVOIDIT provides a framework for classifying appropriate attack information, which is fundamental in devising defense strategies against such cyber attacks. The AIRS is further used as a knowledge base in a game inspired defense architecture to promote game model selection upon attack identification. Future work will incorporate honeypot attack information to improve attack identification, classification, and defense propagation.In this dissertation, 1,025 common vulnerabilities and exposures (CVEs) and over 5,000 lines of log files instances were captured in the AIRS for analysis. Security experts were consulted to create rules to extract pertinent information and algorithms to correlate identified data for notification. The AIRS was developed using the Codeigniter [74] framework to provide a seamless visualization tool for data mining regarding potential cyber attacks relative to web applications. Testing of the AVOIDIT IRS revealed a recall of 88%, precision of 93%, and a 66% correlation metric

    New Trends in Network Anomaly Detection

    Get PDF

    Combining Naive Bayes and Decision Tree for Adaptive Intrusion Detection

    Full text link
    In this paper, a new learning algorithm for adaptive network intrusion detection using naive Bayesian classifier and decision tree is presented, which performs balance detections and keeps false positives at acceptable level for different types of network attacks, and eliminates redundant attributes as well as contradictory examples from training data that make the detection model complex. The proposed algorithm also addresses some difficulties of data mining such as handling continuous attribute, dealing with missing attribute values, and reducing noise in training data. Due to the large volumes of security audit data as well as the complex and dynamic properties of intrusion behaviours, several data miningbased intrusion detection techniques have been applied to network-based traffic data and host-based data in the last decades. However, there remain various issues needed to be examined towards current intrusion detection systems (IDS). We tested the performance of our proposed algorithm with existing learning algorithms by employing on the KDD99 benchmark intrusion detection dataset. The experimental results prove that the proposed algorithm achieved high detection rates (DR) and significant reduce false positives (FP) for different types of network intrusions using limited computational resources.Comment: 14 Pages, IJNS

    Tree-based Intelligent Intrusion Detection System in Internet of Vehicles

    Full text link
    The use of autonomous vehicles (AVs) is a promising technology in Intelligent Transportation Systems (ITSs) to improve safety and driving efficiency. Vehicle-to-everything (V2X) technology enables communication among vehicles and other infrastructures. However, AVs and Internet of Vehicles (IoV) are vulnerable to different types of cyber-attacks such as denial of service, spoofing, and sniffing attacks. In this paper, an intelligent intrusion detection system (IDS) is proposed based on tree-structure machine learning models. The results from the implementation of the proposed intrusion detection system on standard data sets indicate that the system has the ability to identify various cyber-attacks in the AV networks. Furthermore, the proposed ensemble learning and feature selection approaches enable the proposed system to achieve high detection rate and low computational cost simultaneously.Comment: Accepted in IEEE Global Communications Conference (GLOBECOM) 201

    Review of the machine learning methods in the classification of phishing attack

    Get PDF
    The development of computer networks today has increased rapidly. This can be seen based on the trend of computer users around the world, whereby they need to connect their computer to the Internet. This shows that the use of Internet networks is very important, whether for work purposes or access to social media accounts. However, in widely using this computer network, the privacy of computer users is in danger, especially for computer users who do not install security systems in their computer. This problem will allow hackers to hack and commit network attacks. This is very dangerous, especially for Internet users because hackers can steal confidential information such as bank login account or social media login account. The attacks that can be made include phishing attacks. The goal of this study is to review the types of phishing attacks and current methods used in preventing them. Based on the literature, the machine learning method is widely used to prevent phishing attacks. There are several algorithms that can be used in the machine learning method to prevent these attacks. This study focused on an algorithm that was thoroughly made and the methods in implementing this algorithm are discussed in detail

    Modeling Suspicious Email Detection using Enhanced Feature Selection

    Full text link
    The paper presents a suspicious email detection model which incorporates enhanced feature selection. In the paper we proposed the use of feature selection strategies along with classification technique for terrorists email detection. The presented model focuses on the evaluation of machine learning algorithms such as decision tree (ID3), logistic regression, Na\"ive Bayes (NB), and Support Vector Machine (SVM) for detecting emails containing suspicious content. In the literature, various algorithms achieved good accuracy for the desired task. However, the results achieved by those algorithms can be further improved by using appropriate feature selection mechanisms. We have identified the use of a specific feature selection scheme that improves the performance of the existing algorithms

    TOWARD AUTOMATED THREAT MODELING BY ADVERSARY NETWORK INFRASTRUCTURE DISCOVERY

    Get PDF
    Threat modeling can help defenders ascertain potential attacker capabilities and resources, allowing better protection of critical networks and systems from sophisticated cyber-attacks. One aspect of the adversary profile that is of interest to defenders is the means to conduct a cyber-attack, including malware capabilities and network infrastructure. Even though most defenders collect data on cyber incidents, extracting knowledge about adversaries to build and improve the threat model can be time-consuming. This thesis applies machine learning methods to historical cyber incident data to enable automated threat modeling of adversary network infrastructure. Using network data of attacker command and control servers based on real-world cyber incidents, specific adversary datasets can be created and enriched using the capabilities of internet-scanning search engines. Mixing these datasets with data from benign or non-associated hosts with similar port-service mappings allows for building an interpretable machine learning model of attackers. Additionally, creating internet-scanning search engine queries based on machine learning model predictions allows for automating threat modeling of adversary infrastructure. Automated threat modeling of adversary network infrastructure allows searching for unknown or emerging threat actor network infrastructure on the Internet.Major, Ukrainian Ground ForcesApproved for public release. Distribution is unlimited
    corecore