60 research outputs found

    A Framework to Quantify Network Resilience and Survivability

    Get PDF
    The significance of resilient communication networks in the modern society is well established. Resilience and survivability mechanisms in current networks are limited and domain specific. Subsequently, the evaluation methods are either qualitative assessments or context-specific metrics. There is a need for rigorous quantitative evaluation of network resilience. We propose a service oriented framework to characterize resilience of networks to a number of faults and challenges at any abstraction level. This dissertation presents methods to quantify the operational state and the expected service of the network using functional metrics. We formalize resilience as transitions of the network state in a two-dimensional state space quantifying network characteristics, from which network service performance parameters can be derived. One dimension represents the network as normally operating, partially degraded, or severely degraded. The other dimension represents network service as acceptable, impaired, or unacceptable. Our goal is to initially understand how to characterize network resilience, and ultimately how to guide network design and engineering toward increased resilience. We apply the proposed framework to evaluate the resilience of the various topologies and routing protocols. Furthermore, we present several mechanisms to improve the resilience of the networks to various challenges

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    Developing a fault prediction model for wired copper networks under precipitation

    Get PDF
    Telecommunication companies who face challenges of aging infrastructure need to balance the cost of maintenance with that of providing their services within a service level guarantee. For Telstra, the largest telecommunication company in Australia, this balance is achieved by adopting a passive approach to handle the faults that occur in the network. Rather than actively preventing faults, technicians are assigned to fix faults in a timely manner. However, to achieve an efficient and timely technician assignment, a prediction model is needed to advise planners of the potential number of faults in the network. From statistical analysis, we have developed a fault prediction model by investigating 29 months of data of faults. Our prediction model shows that rain has a significant impact on the number of faults in many areas across Australia, which can be the result of the aging infrastructure

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Proceedings of the 2nd Annual SMACC Research Seminar 2017

    Get PDF
    The Annual SMACC Research Seminar is a forum for researchers from VTT Technical Research Centre of Finland Ltd, Tampere University of Technology (TUT) and industry to present their research in the area of smart machines and manufacturing. The 2nd seminar is held in 7th of November 2017 in Tampere, Finland. The objective of the seminar is to publish results of the research to wider audiences and to offer researchers a forum to discuss their research and to find common research interests and new research ideas. Smart Machines and Manufacturing Competence Centre - SMACC is joint strategic alliance of VTT Ltd and TUT in the area of intelligent machines and manufacturing. SMACC offers unique services for SME`s in the field of machinery and manufacturing - key features are rapid solutions, cutting-edge research expertise and extensive partnership networks. SMACC is promoting digitalization in mechanical engineering and making scientific research with domestic and international partners in several different topics (www.smacc.fi)

    5G wireless network support using umanned aerial vehicles for rural and low-Income areas

    Get PDF
    >Magister Scientiae - MScThe fifth-generation mobile network (5G) is a new global wireless standard that enables state-of-the-art mobile networks with enhanced cellular broadband services that support a diversity of devices. Even with the current worldwide advanced state of broadband connectivity, most rural and low-income settings lack minimum Internet connectivity because there are no economic incentives from telecommunication providers to deploy wireless communication systems in these areas. Using a team of Unmanned Aerial Vehicles (UAVs) to extend or solely supply the 5G coverage is a great opportunity for these zones to benefit from the advantages promised by this new communication technology. However, the deployment and applications of innovative technology in rural locations need extensive research

    Deep Neural Networks for Visual Bridge Inspections and Defect Visualisation in Civil Engineering

    Get PDF
    corecore