21,896 research outputs found

    Novel wearable antenna systems for high datarate mobile communication in healthcare

    Get PDF
    In critical healthcare applications, there is a need for reliable wideband mobile communication links, implemented by portable units with sufficient autonomy. We present the latest generation wearable antenna systems for invisible and comfortable integration in patients' or caregivers' garments. These active textile modules boast excellent performance and reliability, thanks to innovative antenna topologies, leveraged by the application of substrate integrated waveguide technology, pervasive integration of electronics and energy harvesters, and the application of multi-antenna processing techniques. Applications range from mobile communication links between caregivers and a coordination centre during interventions, over wireless sensor systems for patient monitoring, to relaying videos streams between a wireless endoscopy capsule and a remote control station

    Ambient Intelligence in Healthcare: A State-of-the-Art

    Get PDF
    Information technology advancement leads to an innovative paradigm called Ambient Intelligence (AmI). A digital environment is employed along with AmI to enable individuals to be aware to their behaviors, needs, emotions and gestures. Several applications of the AmI systems in healthcare environment attract several researchers. AmI is considered one of the recent technologies that support hospitals, patients, and specialists for personal healthcare with the aid of artificial intelligence techniques and wireless sensor networks. The improvement in the wearable devices, mobile devices, embedded software and wireless technologies open the doors to advanced applications in the AmI paradigm. The WSN and the BAN collect medical data to be used for the progress of the intelligent systems adapted inevitably. The current study outlines the AmI role in healthcare concerning with its relational and technological nature. Health

    Wearable Technology Supported Home Rehabilitation Services in Rural Areas:– Emphasis on Monitoring Structures and Activities of Functional Capacity Handbook

    Get PDF
    The sustainability of modern healthcare systems is under threat. – the ageing of the population, the prevalence of chronic disease and a need to focus on wellness and preventative health management, in parallel with the treatment of disease, pose significant social and economic challenges. The current economic situation has made these issues more acute. Across Europe, healthcare expenditure is expected to rice to almost 16% of GDP by 2020. (OECD Health Statistics 2018). Coupled with a shortage of qualified personnel, European nations are facing increasing challenges in their ability to provide better-integrated and sustainable health and social services. The focus is currently shifting from treatment in a care center to prevention and health promotion outside the care institute. Improvements in technology offers one solution to innovate health care and meet demand at a low cost. New technology has the potential to decrease the need for hospitals and health stations (Lankila et al., 2016. In the future the use of new technologies – including health technologies, sensor technologies, digital media, mobile technology etc. - and digital services will dramatically increase interaction between healthcare personnel and customers (Deloitte Center for Health Solutions, 2015a; Deloitte Center for Health Solutions 2015b). Introduction of technology is expected to drive a change in healthcare delivery models and the relationship between patients and healthcare providers. Applications of wearable sensors are the most promising technology to aid health and social care providers deliver safe, more efficient and cost-effective care as well as improving people’s ability to self-manage their health and wellbeing, alert healthcare professionals to changes in their condition and support adherence to prescribed interventions. (Tedesco et al., 2017; Majumder et al., 2017). While it is true that wearable technology can change how healthcare is monitored and delivered, it is necessary to consider a few things when working towards the successful implementation of this new shift in health care. It raises challenges for the healthcare systems in how to implement these new technologies, and how the growing amount of information in clinical practice, integrates into the clinical workflows of healthcare providers. Future challenges for healthcare include how to use the developing technology in a way that will bring added value to healthcare professionals, healthcare organizations and patients without increasing the workload and cost of the healthcare services. For wearable technology developers, the challenge will be to develop solutions that can be easily integrated and used by healthcare professionals considering the existing constraints. This handbook summarizes key findings from clinical and laboratory-controlled demonstrator trials regarding wearables to assist rehabilitation professionals, who are planning the use of wearable sensors in rehabilitation processes. The handbook can also be used by those developing wearable sensor systems for clinical work and especially for use in hometype environments with specific emphasis on elderly patients, who are our major health care consumers

    Smart technology for healthcare: Exploring the antecedents of adoption intention of healthcare wearable technology

    Get PDF
    © The Author(s), 2019. Technological advancement and personalized health information has led to an increase in people using and responding to wearable technology in the last decade. These changes are often perceived to be beneficial, providing greater information and insights about health for users, organizations and healthcare and government. However, to date, understanding the antecedents of its adoption is limited. Seeking to address this gap, this cross-sectional study examined what factors influence users’ adoption intention of healthcare wearable technology. We used self-administrated online survey to explore adoption intentions of healthcare wearable devices in 171 adults residing in Hong Kong. We analyzed the data by Partial least squares – structural equation modelling (PLS-SEM). The results reveal that perceived convenience and perceived irreplaceability are key predictors of perceived useful ness, which in turn strengthens users’ adoption intention. Additionally, the results also reveal that health belief is one of the key predictors of adoption intention. This paper contributes to the extant literature by providing understanding of how to strengthen users’ intention to adopt healthcare wearable technology. This includes the strengthening of perceived convenience and perceived irreplaceability to enhance the perceived usefulness, incorporating the extensive communication in the area of healthcare messages, which is useful in strengthening consumers’ adoption intention in healthcare wearable technology

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated
    • 

    corecore