8,989 research outputs found

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    The Internet of Things Will Thrive by 2025

    Get PDF
    This report is the latest research report in a sustained effort throughout 2014 by the Pew Research Center Internet Project to mark the 25th anniversary of the creation of the World Wide Web by Sir Tim Berners-LeeThis current report is an analysis of opinions about the likely expansion of the Internet of Things (sometimes called the Cloud of Things), a catchall phrase for the array of devices, appliances, vehicles, wearable material, and sensor-laden parts of the environment that connect to each other and feed data back and forth. It covers the over 1,600 responses that were offered specifically about our question about where the Internet of Things would stand by the year 2025. The report is the next in a series of eight Pew Research and Elon University analyses to be issued this year in which experts will share their expectations about the future of such things as privacy, cybersecurity, and net neutrality. It includes some of the best and most provocative of the predictions survey respondents made when specifically asked to share their views about the evolution of embedded and wearable computing and the Internet of Things

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future
    • 

    corecore