713 research outputs found

    BIOTEX-biosensing textiles for personalised healthcare management.

    Get PDF
    Textile-based sensors offer an unobtrusive method of continually monitoring physiological parameters during daily activities. Chemical analysis of body fluids, noninvasively, is a novel and exciting area of personalized wearable healthcare systems. BIOTEX was an EU-funded project that aimed to develop textile sensors to measure physiological parameters and the chemical composition of body fluids, with a particular interest in sweat. A wearable sensing system has been developed that integrates a textile-based fluid handling system for sample collection and transport with a number of sensors including sodium, conductivity, and pH sensors. Sensors for sweat rate, ECG, respiration, and blood oxygenation were also developed. For the first time, it has been possible to monitor a number of physiological parameters together with sweat composition in real time. This has been carried out via a network of wearable sensors distributed around the body of a subject user. This has huge implications for the field of sports and human performance and opens a whole new field of research in the clinical setting

    A smart home environment to support safety and risk monitoring for the elderly living independently

    Get PDF
    The elderly prefer to live independently despite vulnerability to age-related challenges. Constant monitoring is required in cases where the elderly are living alone. The home environment can be a dangerous environment for the elderly living independently due to adverse events that can occur at any time. The potential risks for the elderly living independently can be categorised as injury in the home, home environmental risks and inactivity due to unconsciousness. The main research objective was to develop a Smart Home Environment (SHE) that can support risk and safety monitoring for the elderly living independently. An unobtrusive and low cost SHE solution that uses a Raspberry Pi 3 model B, a Microsoft Kinect Sensor and an Aeotec 4-in-1 Multisensor was implemented. The Aeotec Multisensor was used to measure temperature, motion, lighting, and humidity in the home. Data from the multisensor was collected using OpenHAB as the Smart Home Operating System. The information was processed using the Raspberry Pi 3 and push notifications were sent when risk situations were detected. An experimental evaluation was conducted to determine the accuracy with which the prototype SHE detected abnormal events. Evaluation scripts were each evaluated five times. The results show that the prototype has an average accuracy, sensitivity and specificity of 94%, 96.92% and 88.93% respectively. The sensitivity shows that the chance of the prototype missing a risk situation is 3.08%, and the specificity shows that the chance of incorrectly classifying a non-risk situation is 11.07%. The prototype does not require any interaction on the part of the elderly. Relatives and caregivers can remotely monitor the elderly person living independently via the mobile application or a web portal. The total cost of the equipment used was below R3000

    Application of data fusion techniques and technologies for wearable health monitoring

    Get PDF
    Technological advances in sensors and communications have enabled discrete integration into everyday objects, both in the home and about the person. Information gathered by monitoring physiological, behavioural, and social aspects of our lives, can be used to achieve a positive impact on quality of life, health, and well-being. Wearable sensors are at the cusp of becoming truly pervasive, and could be woven into the clothes and accessories that we wear such that they become ubiquitous and transparent. To interpret the complex multidimensional information provided by these sensors, data fusion techniques are employed to provide a meaningful representation of the sensor outputs. This paper is intended to provide a short overview of data fusion techniques and algorithms that can be used to interpret wearable sensor data in the context of health monitoring applications. The application of these techniques are then described in the context of healthcare including activity and ambulatory monitoring, gait analysis, fall detection, and biometric monitoring. A snap-shot of current commercially available sensors is also provided, focusing on their sensing capability, and a commentary on the gaps that need to be bridged to bring research to market

    How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis

    Get PDF
    Objective: To determine the accuracy of wrist and arm-worn activity monitors’ estimates of energy expenditure (EE). Data sources: SportDISCUS (EBSCOHost), PubMed, MEDLINE (Ovid), PsycINFO (EBSCOHost), Embase (Ovid) and CINAHL (EBSCOHost). Design: A random effects meta-analysis was performed to evaluate the difference in EE estimates between activity monitors and criterion measurements. Moderator analyses were conducted to determine the benefit of additional sensors and to compare the accuracy of devices used for research purposes with commercially available devices. Eligibility criteria: We included studies validating EE estimates from wrist-worn or arm-worn activity monitors against criterion measures (indirect calorimetry, room calorimeters and doubly labelled water) in healthy adult populations. Results: 60 studies (104 effect sizes) were included in the meta-analysis. Devices showed variable accuracy depending on activity type. Large and significant heterogeneity was observed for many devices (I2 >75%). Combining heart rate or heat sensing technology with accelerometry decreased the error in most activity types. Research-grade devices were statistically more accurate for comparisons of total EE but less accurate than commercial devices during ambulatory activity and sedentary tasks. Conclusions: EE estimates from wrist and arm-worn devices differ in accuracy depending on activity type. Addition of physiological sensors improves estimates of EE, and research-grade devices are superior for total EE. These data highlight the need to improve estimates of EE from wearable devices, and one way this can be achieved is with the addition of heart rate to accelerometry. PROSPEROregistration number: CRD42018085016

    Faults Affecting Energy-Harvesting Circuits of Self-Powered Wireless Sensors and Their Possible Concurrent Detection

    Get PDF
    We analyze the effects of faults on an energy-harvesting circuit (EHC) providing power to a wireless biomedical multisensor node. We show that such faults may prevent the EHC from producing the power supply voltage level required by the multisensor node. Then, we propose a low-cost (in terms of power consumption and area overhead) additional circuit monitoring the voltage level produced by the EHC continuously, and concurrently with the normal operation of the device. Such a monitor gives an error indication if the generated voltage falls below the minimum value required by the sensor node to operate correctly, thus allowing the activation of proper recovery actions to guarantee system fault tolerance. The proposed monitor is self-checking with regard to the internal faults that can occur during its in-field operation, thus providing an error signal when affected by faults itself

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    An Energy-Autonomous Smart Shirt employing wearable sensors for Users’ Safety and Protection in Hazardous Workplaces

    Get PDF
    none4siWearable devices represent a versatile technology in the IoT paradigm, enabling noninvasive and accurate data collection directly from the human body. This paper describes the development of a smart shirt to monitor working conditions in particularly dangerous workplaces. The wearable device integrates a wide set of sensors to locally acquire the user’s vital signs (e.g., heart rate, blood oxygenation, and temperature) and environmental parameters (e.g., the concentration of dangerous gas species and oxygen level). Electrochemical gas-monitoring modules were designed and integrated into the garment for acquiring the concentrations of CO, O2, CH2O, and H2S. The acquired data are wirelessly sent to a cloud platform (IBM Cloud), where they are displayed, processed, and stored. A mobile application was deployed to gather data from the wearable devices and forward them toward the cloud application, enabling the system to operate in areas where aWiFi hotspot is not available. Additionally, the smart shirt comprises a multisource harvesting section to scavenge energy from light, body heat, and limb movements. Indeed, the wearable device integrates several harvesters (thin-film solar panels, thermoelectric generators (TEGs), and piezoelectric transducers), a low-power conditioning section, and a 380 mAh LiPo battery to accumulate the recovered charge. Field tests indicated that the harvesting section could provide up to 216 mW mean power, fully covering the power requirements (P = 1.86 mW) of the sensing, processing, and communication sections in all considered conditions (3.54 mW in the worst-case scenario). However, the 380 mAh LiPo battery guarantees about a 16-day lifetime in the complete absence of energy contributions from the harvesting section.Special Issue “Innovative Materials, Smart Sensors and IoT-based Electronic Solutions for Wearable Applications”, https://www.mdpi.com/journal/applsci/special_issues/Materials_Sensors_Electronic_Solutions_Wearable_ApplicationsopenRoberto De Fazio, Abdel-Razzak Al-Hinnawi, Massimo De Vittorio, Paolo ViscontiDE FAZIO, Roberto; Al-Hinnawi, Abdel-Razzak; DE VITTORIO, Massimo; Visconti, Paol

    Collaborative Processing of Wearable and Ambient Sensor System for Blood Pressure Monitoring

    Get PDF
    This paper describes wireless wearable and ambient sensors that cooperate to monitor a person’s vital signs such as heart rate and blood pressure during daily activities. Each wearable sensor is attached on different parts of the body. The wearable sensors require a high sampling rate and time synchronization to provide a precise analysis of the received signals. The trigger signal for synchronization is provided by the ambient sensors, which detect the user’s presence. The Bluetooth and IEEE 802.15.4 wireless technologies are used for real-time sensing and time synchronization. Thus, this wearable health-monitoring sensor response is closely related to the context in which it is being used. Experimental results indicate that the system simultaneously provides information about the user’s location and vital signs, and the synchronized wearable sensors successfully measures vital signs with a 1 ms resolution
    corecore