1,695 research outputs found

    Validity and Reliability of an Inertial Device for Measuring Dynamic Weight-Bearing Ankle Dorsiflexion

    Get PDF
    A decrease in ankle dorsiflexion causes changes in biomechanics, and different instruments have been used for ankle dorsiflexion testing under static conditions. Consequently, the industry of inertial sensors has developed easy-to-use devices, which measure dynamic ankle dorsiflexion and provide additional parameters such as velocity, acceleration, or movement deviation. Therefore, the aims of this study were to analyze the concurrent validity and test-retest reliability of an inertial device for measuring dynamic weight-bearing ankle dorsiflexion. Sixteen participants were tested using an inertial device (WIMU) and a digital inclinometer. Ankle dorsiflexion from left and right ankle repetitions was used for validity analysis, whereas test-retest reliability was analyzed by comparing measurements from the first and second days. The standard error of the measurement (SEM) between the instruments was very low for both ankle measurements (SEM 0.05) even though a significant systematic bias (~1.77°) was found for the right ankle (d = 0.79). R2 was very close to 1 in the left and right ankles (R2 = 0.85–0.89) as well as the intraclass correlation coefficient (ICC > 0.95). Test-retest reliability analysis showed that systematic bias was below 1° for both instruments, even though a systematic bias (~1.50°) with small effect size was found in the right ankle (d = 0.49) with WIMU. The ICC was very close to 1 and the coefficient of variation (CV) was lower than 4% in both instruments. Thus, WIMU is a valid and reliable inertial device for measuring dynamic weight-bearing ankle dorsiflexion

    On the Use of Inertial Sensors in Educational Engagement Activities

    Get PDF
    Wearable sensors have been successfully used for a few decades in different sporting applications and its use has been constrained mostly to research projects. However, its positive impact has been recently adding other directions towards education, commercial and servicing. The establishment of Sports Engineering as a discipline is playing an important role in Australian universities where relevant material and emerging technologies are required to be taught and in certain circumstances developed. Some of these technologies include the adoption of inertial sensors (accelerometers and gyroscopes). This paper shares the impact of inertial sensors in building engagement in different educational activities at secondary level, with the purpose of engaging them into Sports Engineering disciplines, and at tertiary level through teaching undergraduate and post-graduate programs

    Validity and reliability of a wearable inertial sensor to measure velocity and power in the back squat and bench press

    Get PDF
    Orange, ST, Metcalfe, JW, Liefeith, A, Marshall, P, Madden, LA, Fewster, CR, and Vince, RV. Validity and reliability of a wearable inertial sensor to measure velocity and power in the back squat and bench press. J Strength Cond Res 33(9): 2398-2408, 2019-This study examined the validity and reliability of a wearable inertial sensor to measure velocity and power in the free-weight back squat and bench press. Twenty-nine youth rugby league players (18 ± 1 years) completed 2 test-retest sessions for the back squat followed by 2 test-retest sessions for the bench press. Repetitions were performed at 20, 40, 60, 80, and 90% of 1 repetition maximum (1RM) with mean velocity, peak velocity, mean power (MP), and peak power (PP) simultaneously measured using an inertial sensor (PUSH) and a linear position transducer (GymAware PowerTool). The PUSH demonstrated good validity (Pearson's product-moment correlation coefficient [r]) and reliability (intraclass correlation coefficient [ICC]) only for measurements of MP (r = 0.91; ICC = 0.83) and PP (r = 0.90; ICC = 0.80) at 20% of 1RM in the back squat. However, it may be more appropriate for athletes to jump off the ground with this load to optimize power output. Further research should therefore evaluate the usability of inertial sensors in the jump squat exercise. In the bench press, good validity and reliability were evident only for the measurement of MP at 40% of 1RM (r = 0.89; ICC = 0.83). The PUSH was unable to provide a valid and reliable estimate of any other criterion variable in either exercise. Practitioners must be cognizant of the measurement error when using inertial sensor technology to quantify velocity and power during resistance training, particularly with loads other than 20% of 1RM in the back squat and 40% of 1RM in the bench press

    A multi-modal dance corpus for research into real-time interaction between humans in online virtual environments

    Get PDF
    We present a new, freely available, multimodal corpus for research into, amongst other areas, real-time realistic interaction between humans in online virtual environments. The specific corpus scenario focuses on an online dance class application scenario where students, with avatars driven by whatever 3D capture technology are locally available to them, can learn choerographies with teacher guidance in an online virtual ballet studio. As the data corpus is focused on this scenario, it consists of student/teacher dance choreographies concurrently captured at two different sites using a variety of media modalities, including synchronised audio rigs, multiple cameras, wearable inertial measurement devices and depth sensors. In the corpus, each of the several dancers perform a number of fixed choreographies, which are both graded according to a number of specific evaluation criteria. In addition, ground-truth dance choreography annotations are provided. Furthermore, for unsynchronised sensor modalities, the corpus also includes distinctive events for data stream synchronisation. Although the data corpus is tailored specifically for an online dance class application scenario, the data is free to download and used for any research and development purposes

    System Based on an Inertial Measurement Unit for Accurate Flight Time Determination in Vertical Jumps

    Get PDF
    The world of elite sports has always been characterized by intense competition, where victories are often determined by minimal differences. This means that every little detail in the preparation of top-level athletes is crucial to their performance at the highest level. One of the most significant aspects to monitor is the jumping capacity, as it enables the measurement of performance, progression, and helps prevent injuries. Herein, we present the development of a system capable of measuring the flight time and height reached by the user, reporting the results through a smartphone using an Android ad-hoc application, which handles all the data processing. The system consists of an affordable and portable circuit based on an accelerometer. It communicates with the smartphone via UART using a Bluetooth module, and its battery provides approximately 9 h of autonomy, making it suitable for outdoor operations. To evaluate the system’s precision, we conducted performance tests (counter-movement jumps) with seven subjects. The results confirmed the system’s potential for monitoring high-level sports training sessions, as the average deviation obtained was only 2.1% (~0.01 s) in the analysis of flight time and 4.6% (~0.01 m) in jump height.Projects Sensorsportlab (ref. 07/UPB/22, Redes de Investigación en Ciencias Del Deporte 2022)Sensorsportlab II (ref. 11/UPB/23, Redes de Investigación en Ciencias Del Deporte 2023)Consejo Superior de Deportes (Ministerio de Cultura y Deporte)Andamove project (ref. EXP_74829) founded by the European Union by the NextGeneration EU program with the “Plan de Recuperación, Transformación y Resiliencia 2022” into the program “Proyectos de Investigación en Ciencia y Tecnología aplicada a la Actividad Física Beneficiosa para la Salud (AFBS) y la Medicina Deportiva” of the Consejo Superior de Deportes (Ministerio de Cultura y Deporte)

    Trunk Inclination Estimate During the Sprint Start Using an Inertial Measurement Unit: A Validation Study

    Get PDF
    The proper execution of the sprint start is crucial in determining the performance during a sprint race. In this respect, when moving from the crouch to the upright position, trunk kinematics is a key element. The purpose of this study was to validate the use of a trunk-mounted inertial measurement unit (IMU) in estimating the trunk inclination and angular velocity in the sagittal plane during the sprint start. In-laboratory sprint starts were performed by five sprinters. The local acceleration and angular velocity components provided by the IMU were processed using an adaptive Kalman filter. The accuracy of the IMU inclination estimate and its consistency with trunk inclination were assessed using reference stereophotogrammetric measurements. A Bland-Altman analysis, carried out using parameters (minimum, maximum, and mean values) extracted from the time histories of the estimated variables, and curve similarity analysis (correlation coefficient > 0.99, root mean square difference < 7 deg) indicated the agreement between reference and IMU estimates, opening a promising scenario for an accurate in-field use of IMUs for sprint start performance assessment

    Exploring the role of wearable technology in sport kinematics and kinetics: a systematic review

    Get PDF
    The aim of this review was to understand the use of wearable technology in sport in order to enhance performance and prevent injury. Understanding sports biomechanics is important for injury prevention and performance enhancement and is traditionally assessed using optical motion capture. However, such approaches are limited by capture volume restricting assessment to a laboratory environment, a factor that can be overcome by wearable technology. A systematic search was carried out across seven databases where wearable technology was employed to assess kinetic and kinematic variables in sport. Articles were excluded if they focused on sensor design and did not measure kinetic or kinematic variables or apply the technology on targeted participants. A total of 33 articles were included for full-text analysis where participants took part in a sport and performed dynamic movements relating to performance monitored by wearable technologies. Inertial measurement units, flex sensors and magnetic field and angular rate sensors were among the devices used in over 15 sports to quantify motion. Wearable technology usage is still in an exploratory phase, but there is potential for this technology to positively influence coaching practice and athletes’ technique

    Automatic activity classification and movement assessment during a sports training session using wearable inertial sensors

    Get PDF
    Motion analysis technologies have been widely used to monitor the potential for injury and enhance athlete performance. However, most of these technologies are expensive, can only be used in laboratory environments and examine only a few trials of each movement action. In this paper, we present a novel ambulatory motion analysis framework using wearable inertial sensors to accurately assess all of an athlete’s activities in an outdoor training environment. We firstly present a system that automatically classifies a large range of training activities using the Discrete Wavelet Transform (DWT) in conjunction with a Random forest classifier. The classifier is capable of successfully classifying various activities with up to 98% accuracy. Secondly, a computationally efficient gradient descent algorithm is used to estimate the relative orientations of the wearable inertial sensors mounted on the thigh and shank of a subject, from which the flexion-extension knee angle is calculated. Finally, a curve shift registration technique is applied to both generate normative data and determine if a subject’s movement technique differed to the normative data in order to identify potential injury related factors. It is envisaged that the proposed framework could be utilized for accurate and automatic sports activity classification and reliable movement technique evaluation in various unconstrained environments

    The Use of Wearable Sensors for Preventing, Assessing, and Informing Recovery from Sport-Related Musculoskeletal Injuries: A Systematic Scoping Review

    Get PDF
    Wearable technologies are often indicated as tools that can enable the in-field collection of quantitative biomechanical data, unobtrusively, for extended periods of time, and with few spatial limitations. Despite many claims about their potential for impact in the area of injury prevention and management, there seems to be little attention to grounding this potential in biomechanical research linking quantities from wearables to musculoskeletal injuries, and to assessing the readiness of these biomechanical approaches for being implemented in real practice. We performed a systematic scoping review to characterise and critically analyse the state of the art of research using wearable technologies to study musculoskeletal injuries in sport from a biomechanical perspective. A total of 4952 articles were retrieved from the Web of Science, Scopus, and PubMed databases; 165 were included. Multiple study features—such as research design, scope, experimental settings, and applied context—were summarised and assessed. We also proposed an injury-research readiness classification tool to gauge the maturity of biomechanical approaches using wearables. Five main conclusions emerged from this review, which we used as a springboard to propose guidelines and good practices for future research and dissemination in the field
    corecore