8,316 research outputs found

    Detecting Vital Signs with Wearable Wireless Sensors

    Get PDF
    The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e InnovaciĂłn PI15/00306Ministerio de Ciencia e InnovaciĂłn DTS15/00195Junta de AndalucĂ­a PI-0010-2013Junta de AndalucĂ­a PI-0041-2014Junta de AndalucĂ­a PIN-0394-201

    Impact of Mobile and Wireless Technology on Healthcare Delivery services

    Get PDF
    Modern healthcare delivery services embrace the use of leading edge technologies and new scientific discoveries to enable better cures for diseases and better means to enable early detection of most life-threatening diseases. The healthcare industry is finding itself in a state of turbulence and flux. The major innovations lie with the use of information technologies and particularly, the adoption of mobile and wireless applications in healthcare delivery [1]. Wireless devices are becoming increasingly popular across the healthcare field, enabling caregivers to review patient records and test results, enter diagnosis information during patient visits and consult drug formularies, all without the need for a wired network connection [2]. A pioneering medical-grade, wireless infrastructure supports complete mobility throughout the full continuum of healthcare delivery. It facilitates the accurate collection and the immediate dissemination of patient information to physicians and other healthcare care professionals at the time of clinical decision-making, thereby ensuring timely, safe, and effective patient care. This paper investigates the wireless technologies that can be used for medical applications, and the effectiveness of such wireless solutions in a healthcare environment. It discusses challenges encountered; and concludes by providing recommendations on policies and standards for the use of such technologies within hospitals

    Heart Failure Monitoring System Based on Wearable and Information Technologies

    Get PDF
    In Europe, Cardiovascular Diseases (CVD) are the leading source of death, causing 45% of all deceases. Besides, Heart Failure, the paradigm of CVD, mainly affects people older than 65. In the current aging society, the European MyHeart Project was created, whose mission is to empower citizens to fight CVD by leading a preventive lifestyle and being able to be diagnosed at an early stage. This paper presents the development of a Heart Failure Management System, based on daily monitoring of Vital Body Signals, with wearable and mobile technologies, for the continuous assessment of this chronic disease. The System makes use of the latest technologies for monitoring heart condition, both with wearable garments (e.g. for measuring ECG and Respiration); and portable devices (such as Weight Scale and Blood Pressure Cuff) both with Bluetooth capabilitie

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Smart nanotextiles: materials and their application

    Get PDF
    Textiles are ubiquitous to us, enveloping our skin and surroundings. Not only do they provide a protective shield or act as a comforting cocoon but they also serve esthetic appeal and cultural importance. Recent technologies have allowed the traditional functionality of textiles to be extended. Advances in materials science have added intelligence to textiles and created ‘smart’ clothes. Smart textiles can sense and react to environmental conditions or stimuli, e.g., from mechanical, thermal, chemical, electrical, or magnetic sources (Lam Po Tang and Stylios 2006). Such textiles find uses in many applications ranging from military and security to personalized healthcare, hygiene, and entertainment. Smart textiles may be termed ‘‘passive’’ or ‘‘active.’’ A passive smart textile monitors the wearer’s physiology or the environment, e.g., a shirt with in-built thermistors to log body temperature over time. If actuators are integrated, the textile becomes an active, smart textile as it may respond to a particular stimulus, e.g., the temperature-aware shirt may automatically roll up the sleeves when body temperature rises. The fundamental components in any smart textile are sensors and actuators. Interconnections, power supply, and a control unit are also needed to complete the system. All these components must be integrated into textiles while still retaining the usual tactile, flexible, and comfortable properties that we expect from a textile. Adding new functionalities to textiles while still maintaining the look and feel of the fabric is where nanotechnology has a huge impact on the textile industry. This article describes current developments in materials for smart nanotextiles and some of the many applications where these innovative textiles are of great benefit
    • 

    corecore