5,216 research outputs found

    Cryptanalysis and improvement of chen-hsiang-shih's remote user authentication scheme using smart cards

    Get PDF
    Recently, Chen-Hsiang-Shih proposed a new dynamic ID-based remote user authentication scheme. The authors claimed that their scheme was more secure than previous works. However, this paper demonstrates that theirscheme is still unsecured against different kinds of attacks. In order to enhance the security of the scheme proposed by Chen-Hsiang-Shih, a new scheme is proposed. The scheme achieves the following security goals: without verification table, each user chooses and changes the password freely, each user keeps the password secret, mutual authentication, the scheme establishes a session key after successful authentication, and the scheme maintains the user's anonymity. Security analysis and comparison demonstrate that the proposed scheme is more secure than Das-Saxena-Gulati's scheme, Wang et al.'s scheme and Chen-Hsiang-Shih.Peer ReviewedPostprint (published version

    ROBUST DYNAMIC ID-BASED REMOTE MUTUAL AUTHENTICATION SCHEME

    Get PDF
    Dynamic ID based authentication scheme is more and more important in insecure wireless environment and system. Two of kinds of attack that authentication schemes must resist are stealing identity and reflection attack which is a potential way of attacking a challenge- response authentication system using the same protocol in both direc­tions. It must be guaranteed to prevent attackers from reusing informa­tion from authentication phase and the scheme of Yoon and Yoo satisfies those requirements. However, their scheme can not resist insider and impersonation attack by using lost or stolen smart card. In this paper, we demonstrate that Yoon and Yoo’s scheme is still vulnerable to those attacks. Then, we present an improvement to their scheme in order to isolate such problems

    Cryptanalysis and Further Improvement of a Dynamic ID and Smart Card based Remote user Authentication Scheme

    Get PDF
    Computer systems and their interconnections using networks have im-proved the dependence of both the organizations as well as the individuals on the stored information. This interconnection, in turn, has led to a heightened awareness of the need for data security and the protection of data and re- sources from electronic frauds, electronic eavesdropping, and networkbased attacks. Consequently, cryptography and network security have evolved, leading to the development of smart cards to enforce network security. Re-cently, Rafael Martinez-Pelez and Rico- Novella Francisco [1] pointed out vul-nerabilities in Wang et al. [2] scheme. In this paper, we cryptanalyze Wanget al. scheme and demonstrated that our proposed scheme withstands thevulnerabilities pointed out by Francisco et al. and it completes all the re-cent security requirements of [3]. We implemented the proposed scheme in MATLAB and demonstrated that our proposed scheme is not vulnerable to the shortcomings pointed out by Francisco et al. in their scheme
    • …
    corecore