34 research outputs found

    ID-based tripartite Authenticated Key Agreement Protocols from pairings

    Get PDF
    This paper proposes ID-based tripartite authenticated key agreement protocols. The authenticated three party key agreement protocols from pairings [15], and the ID-based two party authenticated key agreement protocol [13] are studied. These two protocols are taken as the basis for designing three new ID-based tripartite authenticated key agreement protocols. The security properties of all these protocols are studied listing out the possible attacks on them. Further, these protocols are extended to provide key confirmation

    Cryptographic Schemes based on Elliptic Curve Pairings

    Get PDF
    This thesis introduces the concept of certificateless public key cryptography (CLPKC). Elliptic curve pairings are then used to make concrete CL-PKC schemes and are also used to make other efficient key agreement protocols. CL-PKC can be viewed as a model for the use of public key cryptography that is intermediate between traditional certificated PKC and ID-PKC. This is because, in contrast to traditional public key cryptographic systems, CL-PKC does not require the use of certificates to guarantee the authenticity of public keys. It does rely on the use of a trusted authority (TA) who is in possession of a master key. In this respect, CL-PKC is similar to identity-based public key cryptography (ID-PKC). On the other hand, CL-PKC does not suffer from the key escrow property that is inherent in ID-PKC. Applications for the new infrastructure are discussed. We exemplify how CL-PKC schemes can be constructed by constructing several certificateless public key encryption schemes and modifying other existing ID based schemes. The lack of certificates and the desire to prove the schemes secure in the presence of an adversary who has access to the master key or has the ability to replace public keys, requires the careful development of new security models. We prove that some of our schemes are secure, provided that the Bilinear Diffie-Hellman Problem is hard. We then examine Joux’s protocol, which is a one round, tripartite key agreement protocol that is more bandwidth-efficient than any previous three-party key agreement protocol, however, Joux’s protocol is insecure, suffering from a simple man-in-the-middle attack. We show how to make Joux’s protocol secure, presenting several tripartite, authenticated key agreement protocols that still require only one round of communication. The security properties of the new protocols are studied. Applications for the protocols are also discussed

    Weakness of shim¡¦s New ID-based tripartite multiple-key agreement protocol

    Get PDF
    In this article we show that Shim¡¦s new ID-based tripartite multiple-key agreement protocol still suffers from the impersonation attack, a malicious user can launch an impersonation attack on their protocol

    Pairing-based cryptosystems and key agreement protocols.

    Get PDF
    For a long time, pairings on elliptic curves have been considered to be destructive in elliptic curve cryptography. Only recently after some pioneering works, particularly the well-known Boneh-Franklin identity-based encryption (IBE), pairings have quickly become an important tool to construct novel cryptographic schemes. In this thesis, several new cryptographic schemes with pairings are proposed, which are both efficient and secure with respect to a properly defined security model, and some relevant previous schemes are revisited. IBE provides a public key encryption mechanism where a public key can be an arbitrary string such as an entity identifier and unwieldy certificates are unnecessary. Based on the Sakai-Kasahara key construction, an IBE scheme which is secure in the Boneh-Franklin IBE model is constructed, and two identity-based key encapsulation mechanisms are proposed. These schemes achieve the best efficiency among the existing schemes to date. Recently Al-Riyami and Paterson introduced the certificateless public key encryption (CL-PKE) paradigm, which eliminates the need of certificates and at the same time retains the desirable properties of IBE without the key escrow problem. The security formulation of CL-PKE is revisited and a strong security model for this type of mechanism is defined. Following a heuristic approach, three efficient CL-PKE schemes which are secure in the defined strong security model are proposed. Identity-based two-party key agreement protocols from pairings are also investigated. The Bellare-Rogaway key agreement model is enhanced and within the model several previously unproven protocols in the literature are formally analysed. In considering that the user identity may be sensitive information in many environments, an identity-based key agreement protocol with unilateral identity privacy is proposed

    A dynamic study with side channel against An Identification Based Encryption

    Get PDF
    Recently, the side channel keeps the attention of researchers in theory of pairing, since, several studies have been done in this subject and all them have the aim in order to attack the cryptosystems of Identification Based Encryption (IBE) which are integrate into smart cards (more than 80% of those cryptosystems are based on a pairing). The great success and the remarkable development of the cryptography IBE in the recent years and the direct connection of this success to the ability of resistance against any kind of attack, especially the DPA and DFA attacks, leave us to browse saying all the studies of the DPA and DFA attacks applied to a pairing and we have observed that they have no great effect to attack the cryptosystems of IBE. That’s what we will see in this paper. In this work we will illuminate the effect of the DPA attack on a cryptosystems of IBE and we would see on what level we can arrive. Thus in the case where this attack can influence on those cryptosystems, we can present an appropriate counter measures to resist such attack. In the other part we will also propose a convenient counter-measure to defend the attack DFA when the embedding degree is eve

    Pairing-based cryptosystems and key agreement protocols

    Get PDF
    For a long time, pairings on elliptic curves have been considered to be destructive in elliptic curve cryptography. Only recently after some pioneering works, particularly the well-known Boneh-Franklin identity-based encryption (IBE), pairings have quickly become an important tool to construct novel cryptographic schemes. In this thesis, several new cryptographic schemes with pairings are proposed, which are both efficient and secure with respect to a properly defined security model, and some relevant previous schemes are revisited. IBE provides a public key encryption mechanism where a public key can be an arbitrary string such as an entity identifier and unwieldy certificates are unnecessary. Based on the Sakai-Kasahara key construction, an IBE scheme which is secure in the Boneh-Franklin IBE model is constructed, and two identity-based key encapsulation mechanisms are proposed. These schemes achieve the best efficiency among the existing schemes to date. Recently Al-Riyami and Paterson introduced the certificateless public key encryption (CL-PKE) paradigm, which eliminates the need of certificates and at the same time retains the desirable properties of IBE without the key escrow problem. The security formulation of CL-PKE is revisited and a strong security model for this type of mechanism is defined. Following a heuristic approach, three efficient CL-PKE schemes which are secure in the defined strong security model are proposed. Identity-based two-party key agreement protocols from pairings are also investigated. The Bellare-Rogaway key agreement model is enhanced and within the model several previously unproven protocols in the literature are formally analysed. In considering that the user identity may be sensitive information in many environments, an identity-based key agreement protocol with unilateral identity privacy is proposed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Security in Key Agreement: Two-Party Certificateless Schemes

    Get PDF
    The main goal of cryptography is to enable secure communication over a public channel; often a secret shared among the communicating parties is used to achieve this. The process by which these parties agree on such a shared secret is called key agreement. In this thesis, we focus on two-party key agreement protocols in the public-key setting and study the various methods used to establish and validate public keys. We pay particular attention to certificateless key agreement schemes and attempt to formalize a relevant notion of security. To that end, we give a possible extension of the existing extended Canetti-Krawzcyk security model applicable to the certificateless setting. We observe that none of the certificateless protocols we have seen in the literature are secure in this model; it is an open question whether such schemes exist. We analyze several published certificateless key agreement protocols, demonstrating the existence of key compromise impersonation attacks and even a man-in-the-middle attack in one case, contrary to the claims of the authors. We also briefly describe weaknesses exhibited by these protocols in the context of our suggested security model

    ISSUES AND SOLUTIONS OF APPLYING IDENTITY-BASED CRYPTOGRAPHY TO MOBILE AD-HOC NETWORKS

    Get PDF
    Concept of Mobile Ad-hoc Networks (MANETs) was brought up a few decades ago with assumed prosperous future. Unfortunately, we do not see many practical applications of them in real life. Security of MANETs is a big concern considered by investors and industries, and hinders them from putting MANETs into application. Requirements of security, and difficulties to meet these requirements have been stated clearly already; yet solutions to these difficulties are not quite clear. Cryptographic technologies seem to be capable of satisfying most of the requirements, which has been proved in Internet or wired networks. However, most of the technologies, including symmetric and traditional asymmetric cryptography (such as Public Key Infrastructure (PKI)), are inapplicable or inconvenient to use inMANETs context. Identity-based Cryptography (IBC), as a special form of asymmetric cryptography, carries many features interesting for MANETs. IBC has been studied a lot recently by researchers of MANET security, and many applications have been proposed and claimed to address this difficult problem. However, it is still the case that most of the solutions are not sound enough to be used in a practical MANET. This thesis starts with an intensive survey on the proposals of applications of IBC in MANETs, and points out the issues, limitations and weaknesses in these proposals and also in IBC itself. The thesis proposes a novel framework with key management and secure routing scheme integrated aiming to address these issues. This scheme brings these contributions: compared to symmetric key solutions, it has more functionality derived from asymmetric keys, and is more secure due to using 1-to-m broadcasting key instead of only 1 group broadcasting key, and has less keys to store per node due to using asymmetric keys instead of pairwise symmetric keys; compared to traditional asymmetric cryptography solutions, the storage and communication requirements are lower due to IBC properties; compared to previous IBC solutions, it has no key management and secure routing interdependency cycle problem. Security of the proposed scheme is proved and performance of the scheme is simulated and analyzed in the thesis. To the end of a complete solution for an arbitraryMANET running in an arbitrary environment, the thesis proposes enhancements to counter various attacks and options to abate or eliminate limitations and weaknesses of IBC. The proposed scheme has a wide range of applicability for various MANETs with little or no administrative overhead depending on situations where it is considered

    Implementation of an identity based encryption sub-system for secure e-mail and other applications

    Get PDF
    This thesis describes the requirements for, and design of, a suite of a sub-systems which support the introduction of Identity Based Encryption (IBE) to Intrenet communications. Current methods for securing Internet transmission are overly complex to users and require expensive and complex supporting infrastructure for distributing credentials such as certificates or public keys. Identity Based Encryption holds a promise of simplifying the process without compromising the security. In this thesis I will outline the theory behind the cryptography required , give a background to e-M ail and messaging protocols,the current security methods, the infrastructure used, the issues with these methods, and the break through that recent innovations in Identity Based Encryption hopes to deliver.I will describe an implementation of a sub-system that secures e-Mail and other protocolsin desktop platforms with as little impact on the end user as possible
    corecore