231 research outputs found

    Identification of internal defects in potato using spectroscopy and computational intelligence based on majority voting techniques

    Get PDF
    Producción CientíficaPotatoes are one of the most demanded products due to their richness in nutrients. However, the lack of attention to external and, especially, internal defects greatly reduces its marketability and makes it prone to a variety of diseases. The present study aims to identify healthy-looking potatoes but with internal defects. A visible (Vis), near-infrared (NIR), and short-wavelength infrared (SWIR) spectrometer was used to capture spectral data from the samples. Using a hybrid of artificial neural networks (ANN) and the cultural algorithm (CA), the wavelengths of 861, 883, and 998 nm in Vis/NIR region, and 1539, 1858, and 1896 nm in the SWIR region were selected as optimal. Then, the samples were classified into either healthy or defective class using an ensemble method consisting of four classifiers, namely hybrid ANN and imperialist competitive algorithm (ANN-ICA), hybrid ANN and harmony search algorithm (ANN-HS), linear discriminant analysis (LDA), and k-nearest neighbors (KNN), combined with the majority voting (MV) rule. The performance of the classifier was assessed using only the selected wavelengths and using all the spectral data. The total correct classification rates using all the spectral data were 96.3% and 86.1% in SWIR and Vis/NIR ranges, respectively, and using the optimal wavelengths 94.1% and 83.4% in SWIR and Vis/NIR, respectively. The statistical tests revealed that there are no significant differences between these datasets. Interestingly, the best results were obtained using only LDA, achieving 97.7% accuracy for the selected wavelengths in the SWIR spectral range.Ministerio de Ciencia, Innovación y Universidades; Ministerio de Ciencia e Innovación; Agencia Estatal de Investigación y Fondo Europeo de Desarrollo Regional (FEDER) - (grant RTI2018-098156-B-C53

    Green Tech: An Android Application for the Automatic Identification of Potato Leaf Diseases using Deep Learning.

    Get PDF
    Abstract: Research on sustainable agricultural development is becoming more and more significant owing to the advancements in agricultural technology and the use of artificial intelligence to diagnose plant diseases. Potato is an extensively consumed food corp worldwide, with India being one of the biggest producers. However, numerous diseases, particularly leaf diseases like early blight and late blight, have a substantial negative influence on the quality and quantity of potatoes. Manual interpretation of these diseases is inconvenient as the process is time-consuming and requires high expertise. Thus, the researchers are working on automatizing leaf disease detection in real time. In this work, we have presented an Android application for classifying a potato leaf into - healthy, early blight or late blight categories. A deep learning model based on a pre-trained VGG 16 model was designed for classification purposes. Transfer learning is also applied in detecting leaf diseases in several other plants. The model was fine-tuned using a dataset containing 1500 potato leaf images with 900, 300 and 300 train, test and validation images respectivelyFinally, the model was converted into a TFlite file for integration and deployment in Android Studio. Experiments showed promising results with an obtained accuracy of 98%

    AGI for Agriculture

    Full text link
    Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education. Within healthcare, AGI is being utilized to analyze clinical medical notes, recognize patterns in patient data, and aid in patient management. Agriculture is another critical sector that impacts the lives of individuals worldwide. It serves as a foundation for providing food, fiber, and fuel, yet faces several challenges, such as climate change, soil degradation, water scarcity, and food security. AGI has the potential to tackle these issues by enhancing crop yields, reducing waste, and promoting sustainable farming practices. It can also help farmers make informed decisions by leveraging real-time data, leading to more efficient and effective farm management. This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure, and their impact on precision livestock and precision crops. By leveraging the power of AGI, these emerging technologies can provide farmers with actionable insights, allowing for optimized decision-making and increased productivity. The transformative potential of AGI in agriculture is vast, and this paper aims to highlight its potential to revolutionize the industry

    Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment

    Get PDF
    Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time-consuming for such high-dimensional datasets, and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task

    WeedFocusNet: A Revolutionary Approach using the Attention-Driven ResNet152V2 Transfer Learning

    Get PDF
    The advancement of modern agriculture is heavily dependent on accurate weed detection, which contributes to efficient resource utilization and increased crop yield. Traditional methods, however, often need more accuracy and efficiency. This paper presents WeedFocusNet, an innovative approach that leverages attention-driven ResNet152V2 transfer learning addresses these challenges. This approach enhances model generalization and focuses on critical features for weed identification, thereby overcoming the limitations of existing methods. The objective is to develop a model that enhances weed detection accuracy and optimizes computational efficiency. WeedFocusNet, a novel deep-learning model, performs weed detection better by employing attention-driven transfer learning based on the ResNet152V2 architecture. The model integrates an attention module, concentrating its predictions on the most significant image features. Evaluated on a dataset of weed and crop images, WeedFocusNet achieved an accuracy of 99.28%, significantly outperforming previous methods and models, such as MobileNetV2, ResNet50, and custom CNN models, in terms of accuracy, time complexity, and memory usage, despite its larger memory footprint. These results emphasize the transformative potential of WeedFocusNet as a powerful approach for automating weed detection in agricultural fields

    On Deep Machine Learning Methods for Anomaly Detection within Computer Vision

    Get PDF
    This thesis concerns deep learning approaches for anomaly detection in images. Anomaly detection addresses how to find any kind of pattern that differs from the regularities found in normal data and is receiving increasingly more attention in deep learning research. This is due in part to its wide set of potential applications ranging from automated CCTV surveillance to quality control across a range of industries. We introduce three original methods for anomaly detection applicable to two specific deployment scenarios. In the first, we detect anomalous activity in potentially crowded scenes through imagery captured via CCTV or other video recording devices. In the second, we segment defects in textures and demonstrate use cases representative of automated quality inspection on industrial production lines. In the context of detecting anomalous activity in scenes, we take an existing state-of-the-art method and introduce several enhancements including the use of a region proposal network for region extraction and a more information-preserving feature preprocessing strategy. This results in a simpler method that is significantly faster and suitable for real-time application. In addition, the increased efficiency facilitates building higher-dimensional models capable of improved anomaly detection performance, which we demonstrate on the pedestrian-based UCSD Ped2 dataset. In the context of texture defect detection, we introduce a method based on the idea of texture restoration that surpasses all state-of-the-art methods on the texture classes of the challenging MVTecAD dataset. In the same context, we additionally introduce a method that utilises transformer networks for future pixel and feature prediction. This novel method is able to perform competitive anomaly detection on most of the challenging MVTecAD dataset texture classes and illustrates both the promise and limitations of state-of-the-art deep learning transformers for the task of texture anomaly detection

    Computer vision based classification of fruits and vegetables for self-checkout at supermarkets

    Get PDF
    The field of machine learning, and, in particular, methods to improve the capability of machines to perform a wider variety of generalised tasks are among the most rapidly growing research areas in today’s world. The current applications of machine learning and artificial intelligence can be divided into many significant fields namely computer vision, data sciences, real time analytics and Natural Language Processing (NLP). All these applications are being used to help computer based systems to operate more usefully in everyday contexts. Computer vision research is currently active in a wide range of areas such as the development of autonomous vehicles, object recognition, Content Based Image Retrieval (CBIR), image segmentation and terrestrial analysis from space (i.e. crop estimation). Despite significant prior research, the area of object recognition still has many topics to be explored. This PhD thesis focuses on using advanced machine learning approaches to enable the automated recognition of fresh produce (i.e. fruits and vegetables) at supermarket self-checkouts. This type of complex classification task is one of the most recently emerging applications of advanced computer vision approaches and is a productive research topic in this field due to the limited means of representing the features and machine learning techniques for classification. Fruits and vegetables offer significant inter and intra class variance in weight, shape, size, colour and texture which makes the classification challenging. The applications of effective fruit and vegetable classification have significant importance in daily life e.g. crop estimation, fruit classification, robotic harvesting, fruit quality assessment, etc. One potential application for this fruit and vegetable classification capability is for supermarket self-checkouts. Increasingly, supermarkets are introducing self-checkouts in stores to make the checkout process easier and faster. However, there are a number of challenges with this as all goods cannot readily be sold with packaging and barcodes, for instance loose fresh items (e.g. fruits and vegetables). Adding barcodes to these types of items individually is impractical and pre-packaging limits the freedom of choice when selecting fruits and vegetables and creates additional waste, hence reducing customer satisfaction. The current situation, which relies on customers correctly identifying produce themselves leaves open the potential for incorrect billing either due to inadvertent error, or due to intentional fraudulent misclassification resulting in financial losses for the store. To address this identified problem, the main goals of this PhD work are: (a) exploring the types of visual and non-visual sensors that could be incorporated into a self-checkout system for classification of fruits and vegetables, (b) determining a suitable feature representation method for fresh produce items available at supermarkets, (c) identifying optimal machine learning techniques for classification within this context and (d) evaluating our work relative to the state-of-the-art object classification results presented in the literature. An in-depth analysis of related computer vision literature and techniques is performed to identify and implement the possible solutions. A progressive process distribution approach is used for this project where the task of computer vision based fruit and vegetables classification is divided into pre-processing and classification techniques. Different classification techniques have been implemented and evaluated as possible solution for this problem. Both visual and non-visual features of fruit and vegetables are exploited to perform the classification. Novel classification techniques have been carefully developed to deal with the complex and highly variant physical features of fruit and vegetables while taking advantages of both visual and non-visual features. The capability of classification techniques is tested in individual and ensemble manner to achieved the higher effectiveness. Significant results have been obtained where it can be concluded that the fruit and vegetables classification is complex task with many challenges involved. It is also observed that a larger dataset can better comprehend the complex variant features of fruit and vegetables. Complex multidimensional features can be extracted from the larger datasets to generalise on higher number of classes. However, development of a larger multiclass dataset is an expensive and time consuming process. The effectiveness of classification techniques can be significantly improved by subtracting the background occlusions and complexities. It is also worth mentioning that ensemble of simple and less complicated classification techniques can achieve effective results even if applied to less number of features for smaller number of classes. The combination of visual and nonvisual features can reduce the struggle of a classification technique to deal with higher number of classes with similar physical features. Classification of fruit and vegetables with similar physical features (i.e. colour and texture) needs careful estimation and hyper-dimensional embedding of visual features. Implementing rigorous classification penalties as loss function can achieve this goal at the cost of time and computational requirements. There is a significant need to develop larger datasets for different fruit and vegetables related computer vision applications. Considering more sophisticated loss function penalties and discriminative hyper-dimensional features embedding techniques can significantly improve the effectiveness of the classification techniques for the fruit and vegetables applications

    Scientific Advances in STEM: From Professor to Students

    Get PDF
    This book collects the publications of the special Topic Scientific advances in STEM: from Professor to students. The aim is to contribute to the advancement of the Science and Engineering fields and their impact on the industrial sector, which requires a multidisciplinary approach. University generates and transmits knowledge to serve society. Social demands continuously evolve, mainly because of cultural, scientific, and technological development. Researchers must contextualize the subjects they investigate to their application to the local industry and community organizations, frequently using a multidisciplinary point of view, to enhance the progress in a wide variety of fields (aeronautics, automotive, biomedical, electrical and renewable energy, communications, environmental, electronic components, etc.). Most investigations in the fields of science and engineering require the work of multidisciplinary teams, representing a stockpile of research projects in different stages (final year projects, master’s or doctoral studies). In this context, this Topic offers a framework for integrating interdisciplinary research, drawing together experimental and theoretical contributions in a wide variety of fields

    Automated image-based quality control of molecularly imprinted polymer films

    Get PDF
    We present results of applying a feature extraction process to images of coatings of molecularly imprinted polymers (MIPs) coatings on glass substrates for defect detec- tion. Geometric features such as MIP side lengths, aspect ratio, internal angles, edge regularity, and edge strength are obtained by using Hough transforms, and Canny edge detection. A Self Organizing Map (SOM) is used for classification of texture of MIP surfaces. The SOM is trained on a data set comprised of images of manufactured MIPs. The raw images are first processed using Hough transforms and Canny edge detection to extract just the MIP-coated portion of the surface, allowing for surface area estimation and reduction of training set size. The training data set is comprised of 20-dimensional feature vectors, each of which is calculated from a single section of a gray scale image of a MIP. Haralick textures are among the quantifiers used as feature vector components. The training data is then processed using principal component analysis to reduce the number of dimensions of the data set. After training, the SOM is capable of classifying texture, including defects
    • …
    corecore