1,304 research outputs found

    The THUMOS Challenge on Action Recognition for Videos "in the Wild"

    Get PDF
    Automatically recognizing and localizing wide ranges of human actions has crucial importance for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition, including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include `background videos' which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013--2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world. In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges.Comment: Preprint submitted to Computer Vision and Image Understandin

    Self-supervised object detection from audio-visual correspondence

    Get PDF
    We tackle the problem of learning object detectors without supervision. Differently from weakly-supervised object detection, we do not assume image-level class labels. Instead, we extract a supervisory signal from audio-visual data, using the audio component to "teach" the object detector. While this problem is related to sound source localisation, it is considerably harder because the detector must classify the objects by type, enumerate each instance of the object, and do so even when the object is silent. We tackle this problem by first designing a self-supervised framework with a contrastive objective that jointly learns to classify and localise objects. Then, without using any supervision, we simply use these self-supervised labels and boxes to train an image-based object detector. With this, we outperform previous unsupervised and weakly-supervised detectors for the task of object detection and sound source localization. We also show that we can align this detector to ground-truth classes with as little as one label per pseudo-class, and show how our method can learn to detect generic objects that go beyond instruments, such as airplanes and cats.Comment: Under revie

    Learning without Prejudice: Avoiding Bias in Webly-Supervised Action Recognition

    Get PDF
    Webly-supervised learning has recently emerged as an alternative paradigm to traditional supervised learning based on large-scale datasets with manual annotations. The key idea is that models such as CNNs can be learned from the noisy visual data available on the web. In this work we aim to exploit web data for video understanding tasks such as action recognition and detection. One of the main problems in webly-supervised learning is cleaning the noisy labeled data from the web. The state-of-the-art paradigm relies on training a first classifier on noisy data that is then used to clean the remaining dataset. Our key insight is that this procedure biases the second classifier towards samples that the first one understands. Here we train two independent CNNs, a RGB network on web images and video frames and a second network using temporal information from optical flow. We show that training the networks independently is vastly superior to selecting the frames for the flow classifier by using our RGB network. Moreover, we show benefits in enriching the training set with different data sources from heterogeneous public web databases. We demonstrate that our framework outperforms all other webly-supervised methods on two public benchmarks, UCF-101 and Thumos'14.Comment: Submitted to CVIU SI: Computer Vision and the We

    Weakly-Supervised Temporal Localization via Occurrence Count Learning

    Get PDF
    We propose a novel model for temporal detection and localization which allows the training of deep neural networks using only counts of event occurrences as training labels. This powerful weakly-supervised framework alleviates the burden of the imprecise and time-consuming process of annotating event locations in temporal data. Unlike existing methods, in which localization is explicitly achieved by design, our model learns localization implicitly as a byproduct of learning to count instances. This unique feature is a direct consequence of the model's theoretical properties. We validate the effectiveness of our approach in a number of experiments (drum hit and piano onset detection in audio, digit detection in images) and demonstrate performance comparable to that of fully-supervised state-of-the-art methods, despite much weaker training requirements.Comment: Accepted at ICML 201

    Move Forward and Tell: A Progressive Generator of Video Descriptions

    Full text link
    We present an efficient framework that can generate a coherent paragraph to describe a given video. Previous works on video captioning usually focus on video clips. They typically treat an entire video as a whole and generate the caption conditioned on a single embedding. On the contrary, we consider videos with rich temporal structures and aim to generate paragraph descriptions that can preserve the story flow while being coherent and concise. Towards this goal, we propose a new approach, which produces a descriptive paragraph by assembling temporally localized descriptions. Given a video, it selects a sequence of distinctive clips and generates sentences thereon in a coherent manner. Particularly, the selection of clips and the production of sentences are done jointly and progressively driven by a recurrent network -- what to describe next depends on what have been said before. Here, the recurrent network is learned via self-critical sequence training with both sentence-level and paragraph-level rewards. On the ActivityNet Captions dataset, our method demonstrated the capability of generating high-quality paragraph descriptions for videos. Compared to those by other methods, the descriptions produced by our method are often more relevant, more coherent, and more concise.Comment: Accepted by ECCV 201

    TagBook: A Semantic Video Representation without Supervision for Event Detection

    Get PDF
    We consider the problem of event detection in video for scenarios where only few, or even zero examples are available for training. For this challenging setting, the prevailing solutions in the literature rely on a semantic video representation obtained from thousands of pre-trained concept detectors. Different from existing work, we propose a new semantic video representation that is based on freely available social tagged videos only, without the need for training any intermediate concept detectors. We introduce a simple algorithm that propagates tags from a video's nearest neighbors, similar in spirit to the ones used for image retrieval, but redesign it for video event detection by including video source set refinement and varying the video tag assignment. We call our approach TagBook and study its construction, descriptiveness and detection performance on the TRECVID 2013 and 2014 multimedia event detection datasets and the Columbia Consumer Video dataset. Despite its simple nature, the proposed TagBook video representation is remarkably effective for few-example and zero-example event detection, even outperforming very recent state-of-the-art alternatives building on supervised representations.Comment: accepted for publication as a regular paper in the IEEE Transactions on Multimedi

    Contextual Action Recognition with R*CNN

    Full text link
    There are multiple cues in an image which reveal what action a person is performing. For example, a jogger has a pose that is characteristic for jogging, but the scene (e.g. road, trail) and the presence of other joggers can be an additional source of information. In this work, we exploit the simple observation that actions are accompanied by contextual cues to build a strong action recognition system. We adapt RCNN to use more than one region for classification while still maintaining the ability to localize the action. We call our system R*CNN. The action-specific models and the feature maps are trained jointly, allowing for action specific representations to emerge. R*CNN achieves 90.2% mean AP on the PASAL VOC Action dataset, outperforming all other approaches in the field by a significant margin. Last, we show that R*CNN is not limited to action recognition. In particular, R*CNN can also be used to tackle fine-grained tasks such as attribute classification. We validate this claim by reporting state-of-the-art performance on the Berkeley Attributes of People dataset
    • …
    corecore