1,955 research outputs found

    A Closer Look at Weak Label Learning for Audio Events

    Get PDF
    —Audio content analysis in terms of sound events is an important research problem for a variety of applications. Recently, the development of weak labeling approaches for audio or sound event detection (AED) and availability of large scale weakly labeled dataset have finally opened up the possibility of large scale AED. However, a deeper understanding of how weak labels affect the learning for sound events is still missing from literature. In this work, we first describe a CNN based approach for weakly supervised training of audio events. The approach follows some basic design principle desirable in a learning method relying on weakly labeled audio. We then describe important characteristics, which naturally arise in weakly supervised learning of sound events. We show how these aspects of weak labels affect the generalization of models. More specifically, we study how characteristics such as label density and corruption of labels affects weakly supervised training for audio events. We also study the feasibility of directly obtaining weak labeled data from the web without any manual label and compare it with a dataset which has been manually labeled. The analysis and understanding of these factors should be taken into picture in the development of future weak label learning methods. Audioset, a large scale weakly labeled dataset for sound events is used in our experiments

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Experiments on the DCASE Challenge 2016: Acoustic Scene Classification and Sound Event Detection in Real Life Recording

    Get PDF
    In this paper we present our work on Task 1 Acoustic Scene Classi- fication and Task 3 Sound Event Detection in Real Life Recordings. Among our experiments we have low-level and high-level features, classifier optimization and other heuristics specific to each task. Our performance for both tasks improved the baseline from DCASE: for Task 1 we achieved an overall accuracy of 78.9% compared to the baseline of 72.6% and for Task 3 we achieved a Segment-Based Error Rate of 0.76 compared to the baseline of 0.91

    Learning Multimodal Latent Attributes

    Get PDF
    Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot transfer learning and importantly zero-shot learning
    • …
    corecore