1,390 research outputs found

    Large-scale fine-grained semantic indexing of biomedical literature based on weakly-supervised deep learning

    Full text link
    Semantic indexing of biomedical literature is usually done at the level of MeSH descriptors, representing topics of interest for the biomedical community. Several related but distinct biomedical concepts are often grouped together in a single coarse-grained descriptor and are treated as a single topic for semantic indexing. This study proposes a new method for the automated refinement of subject annotations at the level of concepts, investigating deep learning approaches. Lacking labelled data for this task, our method relies on weak supervision based on concept occurrence in the abstract of an article. The proposed approach is evaluated on an extended large-scale retrospective scenario, taking advantage of concepts that eventually become MeSH descriptors, for which annotations become available in MEDLINE/PubMed. The results suggest that concept occurrence is a strong heuristic for automated subject annotation refinement and can be further enhanced when combined with dictionary-based heuristics. In addition, such heuristics can be useful as weak supervision for developing deep learning models that can achieve further improvement in some cases.Comment: 48 pages, 5 figures, 9 tables, 1 algorith

    Weakly Supervised Multi-Label Classification of Full-Text Scientific Papers

    Full text link
    Instead of relying on human-annotated training samples to build a classifier, weakly supervised scientific paper classification aims to classify papers only using category descriptions (e.g., category names, category-indicative keywords). Existing studies on weakly supervised paper classification are less concerned with two challenges: (1) Papers should be classified into not only coarse-grained research topics but also fine-grained themes, and potentially into multiple themes, given a large and fine-grained label space; and (2) full text should be utilized to complement the paper title and abstract for classification. Moreover, instead of viewing the entire paper as a long linear sequence, one should exploit the structural information such as citation links across papers and the hierarchy of sections and paragraphs in each paper. To tackle these challenges, in this study, we propose FUTEX, a framework that uses the cross-paper network structure and the in-paper hierarchy structure to classify full-text scientific papers under weak supervision. A network-aware contrastive fine-tuning module and a hierarchy-aware aggregation module are designed to leverage the two types of structural signals, respectively. Experiments on two benchmark datasets demonstrate that FUTEX significantly outperforms competitive baselines and is on par with fully supervised classifiers that use 1,000 to 60,000 ground-truth training samples.Comment: 12 pages; Accepted to KDD 2023 (Code: https://github.com/yuzhimanhua/FUTEX

    Enhancing Low-resource Fine-grained Named Entity Recognition by Leveraging Coarse-grained Datasets

    Full text link
    Named Entity Recognition (NER) frequently suffers from the problem of insufficient labeled data, particularly in fine-grained NER scenarios. Although KK-shot learning techniques can be applied, their performance tends to saturate when the number of annotations exceeds several tens of labels. To overcome this problem, we utilize existing coarse-grained datasets that offer a large number of annotations. A straightforward approach to address this problem is pre-finetuning, which employs coarse-grained data for representation learning. However, it cannot directly utilize the relationships between fine-grained and coarse-grained entities, although a fine-grained entity type is likely to be a subcategory of a coarse-grained entity type. We propose a fine-grained NER model with a Fine-to-Coarse(F2C) mapping matrix to leverage the hierarchical structure explicitly. In addition, we present an inconsistency filtering method to eliminate coarse-grained entities that are inconsistent with fine-grained entity types to avoid performance degradation. Our experimental results show that our method outperforms both KK-shot learning and supervised learning methods when dealing with a small number of fine-grained annotations.Comment: Accepted to EMNLP 202
    • …
    corecore