4,675 research outputs found

    Within-burst synchrony changes for coupled elliptic bursters

    Get PDF
    We study the appearance of a novel phenomenon for linearly coupled identical bursters: synchronized bursts where there are changes of spike synchrony within each burst. The examples we study are for normal form elliptic bursters where there is a periodic slow passage through a Bautin (codimension two degenerate Andronov-Hopf) bifurcation. This burster has a subcritical Andronov-Hopf bifurcation at the onset of repetitive spiking while end of burst occurs via a fold limit cycle bifurcation. We study synchronization behavior of two and three Bautin-type elliptic bursters for a linear direct coupling scheme. Burst synchronization is known to be prevalent behavior among such coupled bursters, while spike synchronization is more dependent on the details of the coupling. We note that higher order terms in the normal form that do not affect the behavior of a single burster can be responsible for changes in synchrony pattern; more precisely, we find within-burst synchrony changes associated with a turning point in the spiking frequency.Comment: 17 pages, 13 figures, 2 table

    Approximation of small-amplitude weakly coupled oscillators with discrete nonlinear Schrodinger equations

    Get PDF
    Small-amplitude weakly coupled oscillators of the Klein-Gordon lattices are approximated by equations of the discrete nonlinear Schrodinger type. We show how to justify this approximation by two methods, which have been very popular in the recent literature. The first method relies on a priori energy estimates and multi-scale decompositions. The second method is based on a resonant normal form theorem. We show that although the two methods are different in the implementation, they produce equivalent results as the end product. We also discuss applications of the discrete nonlinear Schrodinger equation in the context of existence and stability of breathers of the Klein--Gordon lattice

    Sufficient Conditions for Fast Switching Synchronization in Time Varying Network Topologies

    Full text link
    In previous work, empirical evidence indicated that a time-varying network could propagate sufficient information to allow synchronization of the sometimes coupled oscillators, despite an instantaneously disconnected topology. We prove here that if the network of oscillators synchronizes for the static time-average of the topology, then the network will synchronize with the time-varying topology if the time-average is achieved sufficiently fast. Fast switching, fast on the time-scale of the coupled oscillators, overcomes the descychnronizing decoherence suggested by disconnected instantaneous networks. This result agrees in spirit with that of where empirical evidence suggested that a moving averaged graph Laplacian could be used in the master-stability function analysis. A new fast switching stability criterion here-in gives sufficiency of a fast-switching network leading to synchronization. Although this sufficient condition appears to be very conservative, it provides new insights about the requirements for synchronization when the network topology is time-varying. In particular, it can be shown that networks of oscillators can synchronize even if at every point in time the frozen-time network topology is insufficiently connected to achieve synchronization.Comment: Submitted to SIAD

    A Quantum Non-demolition measurement of Fock states of mesoscopic mechanical oscillators

    Get PDF
    We investigate a scheme that makes a quantum non-demolition measurement of the excitation level of a mesoscopic mechanical oscillator by utilizing the anharmonic coupling between two elastic beam bending modes. The non-linear coupling between the two modes shifts the resonant frequency of the readout oscillator proportionate to the excitation of the system oscillator. This frequency shift may be detected as a phase shift of the readout oscillation when driven on resonance. We show that in an appropriate regime this measurement approaches a quantum non-demolition measurement of the phonon number of the system oscillator. As phonon energies in micromechanical oscillators become comparable to or greater than the thermal energy, the individual phonon dynamics within each mode can be resolved. As a result it should be possible to monitor jumps between Fock states caused by the coupling of the system to the thermal reservoirs.Comment: revised, 21 pages, 9 figure
    • …
    corecore