5,194 research outputs found

    Weakly Supervised Learning of Objects, Attributes and Their Associations

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-10605-2_31]”

    Weakly Supervised Learning of Objects and Attributes.

    Get PDF
    PhDThis thesis presents weakly supervised learning approaches to directly exploit image-level tags (e.g. objects, attributes) for comprehensive image understanding, including tasks such as object localisation, image description, image retrieval, semantic segmentation, person re-identification and person search, etc. Unlike the conventional approaches which tackle weakly supervised problem by learning a discriminative model, a generative Bayesian framework is proposed which provides better mechanisms to resolve the ambiguity problem. The proposed model significantly differentiates from the existing approaches in that: (1) All foreground object classes are modelled jointly in a single generative model that encodes multiple objects co-existence so that “explaining away” inference can resolve ambiguity and lead to better learning. (2) Image backgrounds are shared across classes to better learn varying surroundings and “push out” objects of interest. (3) the Bayesian formulation enables the exploitation of various types of prior knowledge to compensate for the limited supervision offered by weakly labelled data, as well as Bayesian domain adaptation for transfer learning. Detecting objects is the first and critical component in image understanding paradigm. Unlike conventional fully supervised object detection approaches, the proposed model aims to train an object detector from weakly labelled data. A novel framework based on Bayesian latent topic model is proposed to address the problem of localisation of objects as bounding boxes in images and videos with image level object labels. The inferred object location can be then used as the annotation to train a classic object detector with conventional approaches. However, objects cannot tell the whole story in an image. Beyond detecting objects, a general visual model should be able to describe objects and segment them at a pixel level. Another limitation of the initial model is that it still requires an additional object detector. To remedy the above two drawbacks, a novel weakly supervised non-parametric Bayesian model is presented to model objects, attributes and their associations automatically from weakly labelled images. Once learned, given a new image, the proposed model can describe the image with the combination of objects and attributes, as well as their locations and segmentation. Finally, this thesis further tackles the weakly supervised learning problem from a transfer learning perspective, by considering the fact that there are always some fully labelled or weakly labelled data available in a related domain while only insufficient labelled data exist for training in the target domain. A powerful semantic description is transferred from the existing fashion photography datasets to surveillance data to solve the person re-identification problem

    LOCL: Learning Object-Attribute Composition using Localization

    Full text link
    This paper describes LOCL (Learning Object Attribute Composition using Localization) that generalizes composition zero shot learning to objects in cluttered and more realistic settings. The problem of unseen Object Attribute (OA) associations has been well studied in the field, however, the performance of existing methods is limited in challenging scenes. In this context, our key contribution is a modular approach to localizing objects and attributes of interest in a weakly supervised context that generalizes robustly to unseen configurations. Localization coupled with a composition classifier significantly outperforms state of the art (SOTA) methods, with an improvement of about 12% on currently available challenging datasets. Further, the modularity enables the use of localized feature extractor to be used with existing OA compositional learning methods to improve their overall performance.Comment: 20 pages, 7 figures, 11 tables, Accepted in British Machine Vision Conference 202

    A Discriminative Representation of Convolutional Features for Indoor Scene Recognition

    Full text link
    Indoor scene recognition is a multi-faceted and challenging problem due to the diverse intra-class variations and the confusing inter-class similarities. This paper presents a novel approach which exploits rich mid-level convolutional features to categorize indoor scenes. Traditionally used convolutional features preserve the global spatial structure, which is a desirable property for general object recognition. However, we argue that this structuredness is not much helpful when we have large variations in scene layouts, e.g., in indoor scenes. We propose to transform the structured convolutional activations to another highly discriminative feature space. The representation in the transformed space not only incorporates the discriminative aspects of the target dataset, but it also encodes the features in terms of the general object categories that are present in indoor scenes. To this end, we introduce a new large-scale dataset of 1300 object categories which are commonly present in indoor scenes. Our proposed approach achieves a significant performance boost over previous state of the art approaches on five major scene classification datasets

    Areas of Attention for Image Captioning

    Get PDF
    We propose "Areas of Attention", a novel attention-based model for automatic image captioning. Our approach models the dependencies between image regions, caption words, and the state of an RNN language model, using three pairwise interactions. In contrast to previous attention-based approaches that associate image regions only to the RNN state, our method allows a direct association between caption words and image regions. During training these associations are inferred from image-level captions, akin to weakly-supervised object detector training. These associations help to improve captioning by localizing the corresponding regions during testing. We also propose and compare different ways of generating attention areas: CNN activation grids, object proposals, and spatial transformers nets applied in a convolutional fashion. Spatial transformers give the best results. They allow for image specific attention areas, and can be trained jointly with the rest of the network. Our attention mechanism and spatial transformer attention areas together yield state-of-the-art results on the MSCOCO dataset.o meaningful latent semantic structure in the generated captions.Comment: Accepted in ICCV 201

    Learning Multimodal Latent Attributes

    Get PDF
    Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot transfer learning and importantly zero-shot learning
    • …
    corecore