559 research outputs found

    Mirror-Aware Neural Humans

    Full text link
    Human motion capture either requires multi-camera systems or is unreliable using single-view input due to depth ambiguities. Meanwhile, mirrors are readily available in urban environments and form an affordable alternative by recording two views with only a single camera. However, the mirror setting poses the additional challenge of handling occlusions of real and mirror image. Going beyond existing mirror approaches for 3D human pose estimation, we utilize mirrors for learning a complete body model, including shape and dense appearance. Our main contributions are extending articulated neural radiance fields to include a notion of a mirror, making it sample-efficient over potential occlusion regions. Together, our contributions realize a consumer-level 3D motion capture system that starts from off-the-shelf 2D poses by automatically calibrating the camera, estimating mirror orientation, and subsequently lifting 2D keypoint detections to 3D skeleton pose that is used to condition the mirror-aware NeRF. We empirically demonstrate the benefit of learning a body model and accounting for occlusion in challenging mirror scenes.Comment: Project website: https://danielajisafe.github.io/mirror-aware-neural-humans

    Body Knowledge and Uncertainty Modeling for Monocular 3D Human Body Reconstruction

    Full text link
    While 3D body reconstruction methods have made remarkable progress recently, it remains difficult to acquire the sufficiently accurate and numerous 3D supervisions required for training. In this paper, we propose \textbf{KNOWN}, a framework that effectively utilizes body \textbf{KNOW}ledge and u\textbf{N}certainty modeling to compensate for insufficient 3D supervisions. KNOWN exploits a comprehensive set of generic body constraints derived from well-established body knowledge. These generic constraints precisely and explicitly characterize the reconstruction plausibility and enable 3D reconstruction models to be trained without any 3D data. Moreover, existing methods typically use images from multiple datasets during training, which can result in data noise (\textit{e.g.}, inconsistent joint annotation) and data imbalance (\textit{e.g.}, minority images representing unusual poses or captured from challenging camera views). KNOWN solves these problems through a novel probabilistic framework that models both aleatoric and epistemic uncertainty. Aleatoric uncertainty is encoded in a robust Negative Log-Likelihood (NLL) training loss, while epistemic uncertainty is used to guide model refinement. Experiments demonstrate that KNOWN's body reconstruction outperforms prior weakly-supervised approaches, particularly on the challenging minority images.Comment: ICCV 202

    {HandFlow}: {Q}uantifying View-Dependent {3D} Ambiguity in Two-Hand Reconstruction with Normalizing Flow

    Get PDF
    Reconstructing two-hand interactions from a single image is a challengingproblem due to ambiguities that stem from projective geometry and heavyocclusions. Existing methods are designed to estimate only a single pose,despite the fact that there exist other valid reconstructions that fit theimage evidence equally well. In this paper we propose to address this issue byexplicitly modeling the distribution of plausible reconstructions in aconditional normalizing flow framework. This allows us to directly supervisethe posterior distribution through a novel determinant magnituderegularization, which is key to varied 3D hand pose samples that project wellinto the input image. We also demonstrate that metrics commonly used to assessreconstruction quality are insufficient to evaluate pose predictions under suchsevere ambiguity. To address this, we release the first dataset with multipleplausible annotations per image called MultiHands. The additional annotationsenable us to evaluate the estimated distribution using the maximum meandiscrepancy metric. Through this, we demonstrate the quality of ourprobabilistic reconstruction and show that explicit ambiguity modeling isbetter-suited for this challenging problem.<br

    HandFlow: Quantifying View-Dependent 3D Ambiguity in Two-Hand Reconstruction with Normalizing Flow

    Full text link
    Reconstructing two-hand interactions from a single image is a challenging problem due to ambiguities that stem from projective geometry and heavy occlusions. Existing methods are designed to estimate only a single pose, despite the fact that there exist other valid reconstructions that fit the image evidence equally well. In this paper we propose to address this issue by explicitly modeling the distribution of plausible reconstructions in a conditional normalizing flow framework. This allows us to directly supervise the posterior distribution through a novel determinant magnitude regularization, which is key to varied 3D hand pose samples that project well into the input image. We also demonstrate that metrics commonly used to assess reconstruction quality are insufficient to evaluate pose predictions under such severe ambiguity. To address this, we release the first dataset with multiple plausible annotations per image called MultiHands. The additional annotations enable us to evaluate the estimated distribution using the maximum mean discrepancy metric. Through this, we demonstrate the quality of our probabilistic reconstruction and show that explicit ambiguity modeling is better-suited for this challenging problem.Comment: VMV 2022 - Symposium on Vision, Modeling, and Visualizatio

    MHR-Net: Multiple-Hypothesis Reconstruction of Non-Rigid Shapes from 2D Views

    Full text link
    We propose MHR-Net, a novel method for recovering Non-Rigid Shapes from Motion (NRSfM). MHR-Net aims to find a set of reasonable reconstructions for a 2D view, and it also selects the most likely reconstruction from the set. To deal with the challenging unsupervised generation of non-rigid shapes, we develop a new Deterministic Basis and Stochastic Deformation scheme in MHR-Net. The non-rigid shape is first expressed as the sum of a coarse shape basis and a flexible shape deformation, then multiple hypotheses are generated with uncertainty modeling of the deformation part. MHR-Net is optimized with reprojection loss on the basis and the best hypothesis. Furthermore, we design a new Procrustean Residual Loss, which reduces the rigid rotations between similar shapes and further improves the performance. Experiments show that MHR-Net achieves state-of-the-art reconstruction accuracy on Human3.6M, SURREAL and 300-VW datasets.Comment: Accepted to ECCV 202

    AI-generated Content for Various Data Modalities: A Survey

    Full text link
    AI-generated content (AIGC) methods aim to produce text, images, videos, 3D assets, and other media using AI algorithms. Due to its wide range of applications and the demonstrated potential of recent works, AIGC developments have been attracting lots of attention recently, and AIGC methods have been developed for various data modalities, such as image, video, text, 3D shape (as voxels, point clouds, meshes, and neural implicit fields), 3D scene, 3D human avatar (body and head), 3D motion, and audio -- each presenting different characteristics and challenges. Furthermore, there have also been many significant developments in cross-modality AIGC methods, where generative methods can receive conditioning input in one modality and produce outputs in another. Examples include going from various modalities to image, video, 3D shape, 3D scene, 3D avatar (body and head), 3D motion (skeleton and avatar), and audio modalities. In this paper, we provide a comprehensive review of AIGC methods across different data modalities, including both single-modality and cross-modality methods, highlighting the various challenges, representative works, and recent technical directions in each setting. We also survey the representative datasets throughout the modalities, and present comparative results for various modalities. Moreover, we also discuss the challenges and potential future research directions

    POCO: 3D Pose and Shape Estimation with Confidence

    Full text link
    The regression of 3D Human Pose and Shape (HPS) from an image is becoming increasingly accurate. This makes the results useful for downstream tasks like human action recognition or 3D graphics. Yet, no regressor is perfect, and accuracy can be affected by ambiguous image evidence or by poses and appearance that are unseen during training. Most current HPS regressors, however, do not report the confidence of their outputs, meaning that downstream tasks cannot differentiate accurate estimates from inaccurate ones. To address this, we develop POCO, a novel framework for training HPS regressors to estimate not only a 3D human body, but also their confidence, in a single feed-forward pass. Specifically, POCO estimates both the 3D body pose and a per-sample variance. The key idea is to introduce a Dual Conditioning Strategy (DCS) for regressing uncertainty that is highly correlated to pose reconstruction quality. The POCO framework can be applied to any HPS regressor and here we evaluate it by modifying HMR, PARE, and CLIFF. In all cases, training the network to reason about uncertainty helps it learn to more accurately estimate 3D pose. While this was not our goal, the improvement is modest but consistent. Our main motivation is to provide uncertainty estimates for downstream tasks; we demonstrate this in two ways: (1) We use the confidence estimates to bootstrap HPS training. Given unlabelled image data, we take the confident estimates of a POCO-trained regressor as pseudo ground truth. Retraining with this automatically-curated data improves accuracy. (2) We exploit uncertainty in video pose estimation by automatically identifying uncertain frames (e.g. due to occlusion) and inpainting these from confident frames. Code and models will be available for research at https://poco.is.tue.mpg.de
    • …
    corecore