776 research outputs found

    Weakly Secure MDS Codes for Simple Multiple Access Networks

    Full text link
    We consider a simple multiple access network (SMAN), where kk sources of unit rates transmit their data to a common sink via nn relays. Each relay is connected to the sink and to certain sources. A coding scheme (for the relays) is weakly secure if a passive adversary who eavesdrops on less than kk relay-sink links cannot reconstruct the data from each source. We show that there exists a weakly secure maximum distance separable (MDS) coding scheme for the relays if and only if every subset of β„“\ell relays must be collectively connected to at least β„“+1\ell+1 sources, for all 0<β„“<k0 < \ell < k. Moreover, we prove that this condition can be verified in polynomial time in nn and kk. Finally, given a SMAN satisfying the aforementioned condition, we provide another polynomial time algorithm to trim the network until it has a sparsest set of source-relay links that still supports a weakly secure MDS coding scheme.Comment: Accepted at ISIT'1

    On the Existence of MDS Codes Over Small Fields With Constrained Generator Matrices

    Full text link
    We study the existence over small fields of Maximum Distance Separable (MDS) codes with generator matrices having specified supports (i.e. having specified locations of zero entries). This problem unifies and simplifies the problems posed in recent works of Yan and Sprintson (NetCod'13) on weakly secure cooperative data exchange, of Halbawi et al. (arxiv'13) on distributed Reed-Solomon codes for simple multiple access networks, and of Dau et al. (ISIT'13) on MDS codes with balanced and sparse generator matrices. We conjecture that there exist such [n,k]q[n,k]_q MDS codes as long as qβ‰₯n+kβˆ’1q \geq n + k - 1, if the specified supports of the generator matrices satisfy the so-called MDS condition, which can be verified in polynomial time. We propose a combinatorial approach to tackle the conjecture, and prove that the conjecture holds for a special case when the sets of zero coordinates of rows of the generator matrix share with each other (pairwise) at most one common element. Based on our numerical result, the conjecture is also verified for all k≀7k \leq 7. Our approach is based on a novel generalization of the well-known Hall's marriage theorem, which allows (overlapping) multiple representatives instead of a single representative for each subset.Comment: 8 page

    Secure Partial Repair in Wireless Caching Networks with Broadcast Channels

    Full text link
    We study security in partial repair in wireless caching networks where parts of the stored packets in the caching nodes are susceptible to be erased. Let us denote a caching node that has lost parts of its stored packets as a sick caching node and a caching node that has not lost any packet as a healthy caching node. In partial repair, a set of caching nodes (among sick and healthy caching nodes) broadcast information to other sick caching nodes to recover the erased packets. The broadcast information from a caching node is assumed to be received without any error by all other caching nodes. All the sick caching nodes then are able to recover their erased packets, while using the broadcast information and the nonerased packets in their storage as side information. In this setting, if an eavesdropper overhears the broadcast channels, it might obtain some information about the stored file. We thus study secure partial repair in the senses of information-theoretically strong and weak security. In both senses, we investigate the secrecy caching capacity, namely, the maximum amount of information which can be stored in the caching network such that there is no leakage of information during a partial repair process. We then deduce the strong and weak secrecy caching capacities, and also derive the sufficient finite field sizes for achieving the capacities. Finally, we propose optimal secure codes for exact partial repair, in which the recovered packets are exactly the same as erased packets.Comment: To Appear in IEEE Conference on Communication and Network Security (CNS

    Further Progress on the GM-MDS Conjecture for Reed-Solomon Codes

    Get PDF
    Designing good error correcting codes whose generator matrix has a support constraint, i.e., one for which only certain entries of the generator matrix are allowed to be non-zero, has found many recent applications, including in distributed coding and storage, multiple access networks, and weakly secure data exchange. The dual problem, where the parity check matrix has a support constraint, comes up in the design of locally repairable codes. The central problem here is to design codes with the largest possible minimum distance, subject to the given support constraint on the generator matrix. An upper bound on the minimum distance can be obtained through a set of singleton bounds, which can be alternatively thought of as a cut-set bound. Furthermore, it is well known that, if the field size is large enough, any random generator matrix obeying the support constraint will achieve the maximum minimum distance with high probability. Since random codes are not easy to decode, structured codes with efficient decoders, e.g., Reed-Solomon codes, are much more desirable. The GM-MDS conjecture of Dau et al states that the maximum minimum distance over all codes satisfying the generator matrix support constraint can be obtained by a Reed Solomon code. If true, this would have significant consequences. The conjecture has been proven for several special case: when the dimension of the code k is less than or equal to five, when the number of distinct support sets on the rows of the generator matrix m, say, is less than or equal to three, or when the generator matrix is sparsest and balanced. In this paper, we report on further progress on the GM-MDS conjecture. In particular, we show that the conjecture is true for all m less than equal to six. This generalizes all previous known results (except for the sparsest and balanced case, which is a very special support constraint).Comment: Submitted to ISIT 201

    Coding with Constraints: Minimum Distance Bounds and Systematic Constructions

    Get PDF
    We examine an error-correcting coding framework in which each coded symbol is constrained to be a function of a fixed subset of the message symbols. With an eye toward distributed storage applications, we seek to design systematic codes with good minimum distance that can be decoded efficiently. On this note, we provide theoretical bounds on the minimum distance of such a code based on the coded symbol constraints. We refine these bounds in the case where we demand a systematic linear code. Finally, we provide conditions under which each of these bounds can be achieved by choosing our code to be a subcode of a Reed-Solomon code, allowing for efficient decoding. This problem has been considered in multisource multicast network error correction. The problem setup is also reminiscent of locally repairable codes.Comment: Submitted to ISIT 201

    MDS matrices over small fields: A proof of the GM-MDS conjecture

    Full text link
    An MDS matrix is a matrix whose minors all have full rank. A question arising in coding theory is what zero patterns can MDS matrices have. There is a natural combinatorial characterization (called the MDS condition) which is necessary over any field, as well as sufficient over very large fields by a probabilistic argument. Dau et al. (ISIT 2014) conjectured that the MDS condition is sufficient over small fields as well, where the construction of the matrix is algebraic instead of probabilistic. This is known as the GM-MDS conjecture. Concretely, if a kΓ—nk \times n zero pattern satisfies the MDS condition, then they conjecture that there exists an MDS matrix with this zero pattern over any field of size ∣F∣β‰₯n+kβˆ’1|\mathbb{F}| \ge n+k-1. In recent years, this conjecture was proven in several special cases. In this work, we resolve the conjecture

    Further Progress on the GM-MDS Conjecture for Reed-Solomon Codes

    Get PDF
    Designing good error correcting codes whose generator matrix has a support constraint, i.e., one for which only certain entries of the generator matrix are allowed to be nonzero, has found many recent applications, including in distributed coding and storage, multiple access networks, and weakly secure data exchange. The dual problem, where the parity check matrix has a support constraint, comes up in the design of locally repairable codes. The central problem here is to design codes with the largest possible minimum distance, subject to the given support constraint on the generator matrix. An upper bound on the minimum distance can be obtained through a set of singleton bounds, which can be alternatively thought of as a cut-set bound. Furthermore, it is well known that, if the field size is large enough, any random generator matrix obeying the support constraint will achieve the maximum minimum distance with high probability. Since random codes are not easy to decode, structured codes with efficient decoders, e.g., Reed-Solomon codes, are much more desirable. The GM-MDS conjecture of Dau et al states that the maximum minimum distance over all codes satisfying the generator matrix support constraint can be obtained by a Reed Solomon code. If true, this would have significant consequences. The conjecture has been proven for several special case: when the dimension of the code k is less than or equal to five, when the number of distinct support sets on the rows of the generator matrix m, say, is less than or equal to three, or when the generator matrix is sparsest and balanced. In this paper, we report on further progress on the GM-MDS conjecture. 1. In particular, we show that the conjecture is true for all m less than equal to six. This generalizes all previous known results (except for the sparsest and balanced case, which is a very special support constraint)

    Optimum Linear Codes with Support Constraints over Small Fields

    Get PDF
    The problem of designing a linear code with the largest possible minimum distance, subject to support constraints on the generator matrix, has recently found several applications. These include multiple access networks [3], [5] as well as weakly secure data exchange [4], [8]. A simple upper bound on the maximum minimum distance can be obtained from a sequence of Singleton bounds (see (3) below) and can further be achieved by randomly choosing the nonzero elements of the generator matrix from a field of a large enough size

    Optimum Linear Codes with Support Constraints over Small Fields

    Get PDF
    We consider the problem of designing optimal linear codes (in terms of having the largest minimum distance) subject to a support constraint on the generator matrix. We show that the largest minimum distance can be achieved by a subcode of a Reed-Solomon code of small field size. As a by-product of this result, we settle the GM-MDS conjecture of Dau et. al. in the affirmative
    • …
    corecore