162,687 research outputs found

    A Comparison of Simple Mass Estimators for Galaxy Clusters

    Get PDF
    High-resolution N-body simulations are used to investigate systematic trends in the mass profiles and total masses of clusters as derived from 3 simple estimators: (1) the weak gravitational lensing shear field under the assumption of an isothermal cluster potential, (2) the dynamical mass obtained from the measured velocity dispersion under the assumption of an isothermal cluster potential, and (3) the classical virial estimator. The clusters consist of order 2.5e+05 particles of mass m_p \simeq 10^{10} \Msun, have triaxial mass distributions, and significant substructure exists within their virial radii. Not surprisingly, the level of agreement between the mass profiles obtained from the various estimators and the actual mass profiles is found to be scale-dependent. The virial estimator yields a good measurement of the total cluster mass, though it is systematically underestimated by of order 10%. This result suggests that, at least in the limit of ideal data, the virial estimator is quite robust to deviations from pure spherical symmetry and the presence of substructure. The dynamical mass estimate based upon a measurement of the cluster velocity dispersion and an assumption of an isothermal potential yields a poor measurement of the total mass. The weak lensing estimate yields a very good measurement of the total mass, provided the mean shear used to determine the equivalent cluster velocity dispersion is computed from an average of the lensing signal over the entire cluster (i.e. the mean shear is computed interior to the virial radius). [abridged]Comment: Accepted for publication in The Astrophysical Journal. Complete paper, including 3 large colour figures can also be obtained from http://bu-ast.bu.edu/~brainerd/preprints

    Intrinsic galaxy shapes and alignments II: Modelling the intrinsic alignment contamination of weak lensing surveys

    Get PDF
    Intrinsic galaxy alignments constitute the major astrophysical systematic of forthcoming weak gravitational lensing surveys but also yield unique insights into galaxy formation and evolution. We build analytic models for the distribution of galaxy shapes based on halo properties extracted from the Millennium Simulation, differentiating between early- and late-type galaxies as well as central galaxies and satellites. The resulting ellipticity correlations are investigated for their physical properties and compared to a suite of current observations. The best-faring model is then used to predict the intrinsic alignment contamination of planned weak lensing surveys. We find that late-type galaxy models generally have weak intrinsic ellipticity correlations, marginally increasing towards smaller galaxy separation and higher redshift. The signal for early-type models at fixed halo mass strongly increases by three orders of magnitude over two decades in galaxy separation, and by one order of magnitude from z=0 to z=2. The intrinsic alignment strength also depends strongly on halo mass, but not on galaxy luminosity at fixed mass, or galaxy number density in the environment. We identify models that are in good agreement with all observational data, except that all models over-predict alignments of faint early-type galaxies. The best model yields an intrinsic alignment contamination of a Euclid-like survey between 0.5-10% at z>0.6 and on angular scales larger than a few arcminutes. Cutting 20% of red foreground galaxies using observer-frame colours can suppress this contamination by up to a factor of two.Comment: 23 pages, 14 figures; minor changes to match version published in MNRA

    Soliton attenuation and emergent hydrodynamics in fragile matter

    Get PDF
    Disordered packings of soft grains are fragile mechanical systems that loose rigidity upon lowering the external pressure towards zero. At zero pressure, we find that any infinitesimal strain-impulse propagates initially as a non-linear solitary wave progressively attenuated by disorder. We demonstrate that the particle fluctuations generated by the solitary-wave decay, can be viewed as a granular analogue of temperature. Their presence is manifested by two emergent macroscopic properties absent in the unperturbed granular packing: a finite pressure that scales with the injected energy (akin to a granular temperature) and an anomalous viscosity that arises even when the microscopic mechanisms of energy dissipation are negligible. Consistent with the interpretation of this state as a fluid-like thermalized state, the shear modulus remains zero. Further, we follow in detail the attenuation of the initial solitary wave identifying two distinct regimes : an initial exponential decay, followed by a longer power law decay and suggest simple models to explain these two regimes.Comment: 8 pages, 3 Figure

    Galaxy-galaxy and galaxy-cluster lensing with the SDSS and FIRST surveys

    Full text link
    We perform a galaxy-galaxy lensing study by correlating the shapes of ∌\sim2.7 ×\times 105^5 galaxies selected from the VLA FIRST radio survey with the positions of ∌\sim38.5 million SDSS galaxies, ∌\sim132000 BCGs and ∌\sim78000 SDSS galaxies that are also detected in the VLA FIRST survey. The measurements are conducted on angular scales Ξ{\theta} â‰Č\lesssim 1200 arcsec. On scales Ξ{\theta} â‰Č\lesssim 200 arcsec we find that the measurements are corrupted by residual systematic effects associated with the instrumental beam of the VLA data. Using simulations we show that we can successfully apply a correction for these effects. Using the three lens samples (the SDSS DR10 sample, the BCG sample and the SDSS-FIRST matched object sample) we measure a tangential shear signal that is inconsistent with zero at the 10σ{\sigma}, 3.8σ{\sigma} and 9σ{\sigma} level respectively. Fitting an NFW model to the detected signals we find that the ensemble mass profile of the BCG sample agrees with the values in the literature. However, the mass profiles of the SDSS DR10 and the SDSS-FIRST matched object samples are found to be shallower and steeper than results in the literature respectively. The best-fitting Virial masses for the SDSS DR10, BCG and SDSS-FIRST matched samples, derived using an NFW model and allowing for a varying concentration factor, are M200SDSS−DR10^{SDSS-DR10}_{200} = (1.2 ±\pm 0.4) ×\times 1012^{12}M⊙_{\odot}, M200BCG^{BCG}_{200} = (1.4 ±\pm 1.3) ×\times 1013^{13}M⊙_{\odot} and M200SDSS−FIRST^{SDSS-FIRST}_{200} = 8.0 ±\pm 4.2 ×\times 1013^{13}M⊙_{\odot} respectively. These results are in good agreement (within ∌\sim2σ{\sigma}) with values in the literature. Our findings suggest that for galaxies to be both bright in the radio and in the optical they must be embedded in very dense environment on scales R â‰Č\lesssim 1Mpc.Comment: 15 pages, 9 figures and 2 table

    Multiple Weak Deflections in Galaxy-Galaxy Lensing

    Full text link
    The frequency and effects of multiple weak deflections in galaxy-galaxy lensing are investigated via Monte Carlo simulations. The lenses in the simulations are galaxies with known redshifts and known rest-frame blue luminosities. The frequency of multiple deflections above a given threshold shear value is quantified for discrete source redshifts, as well as for a set of sources that are broadly distributed in redshift space. In general, the closest lens in projection on the sky is not the only lens for a given source. In addition, ~50% of the time the closest lens is not the most important lens for a given source. Compared to a naive single-deflection calculation in which only the lensing due to the closest weak lens is considered, a full multiple-deflection calculation yields a higher net shear for individual sources, as well as a higher mean tangential shear around the lens centers. The full multiple-deflection calculation also shows that galaxy-galaxy lensing may contribute a substantial amount to cosmic shear on small angular scales. The degree to which galaxy-galaxy lensing contributes to the small-scale cosmic shear is, however, quite sensitive to the mass adopted for the halos of L_B* galaxies. Changing the halo mass by a factor of ~2.5 changes the contribution of galaxy-galaxy lensing to the cosmic shear by a factor of ~3 on scales of order 1 arcmin. The contribution of galaxy-galaxy lensing to cosmic shear decreases rapidly with angular scale and extrapolates to zero at scales of order 5 arcmin. This last result is roughly independent of the halo mass and suggests that for scales greater than about 5 arcmin, cosmic shear is insensitive to the details of the gravitational potentials of large galaxies.Comment: accepted for publication in ApJ; 35 pages, 15 figures; full text with high-resolution Figure 1 available at http://firedrake.bu.edu/preprints/preprints.htm

    Revisiting the bulge-halo conspiracy I: Dependence on galaxy properties and halo mass

    Full text link
    We carry out a systematic investigation of the total mass density profile of massive (Mstar>2e11 Msun) early-type galaxies and its dependence on galactic properties and host halo mass with the aid of a variety of lensing/dynamical data and large mock galaxy catalogs. The latter are produced via semi-empirical models that, by design, are based on just a few basic input assumptions. Galaxies, with measured stellar masses, effective radii and S\'{e}rsic indices, are assigned, via abundance matching relations, host dark matter halos characterized by a typical LCDM profile. Our main results are as follows: (i) In line with observational evidence, our semi-empirical models naturally predict that the total, mass-weighted density slope at the effective radius gamma' is not universal, steepening for more compact and/or massive galaxies, but flattening with increasing host halo mass. (ii) Models characterized by a Salpeter or variable initial mass function and uncontracted dark matter profiles are in good agreement with the data, while a Chabrier initial mass function and/or adiabatic contractions/expansions of the dark matter halos are highly disfavored. (iii) Currently available data on the mass density profiles of very massive galaxies (Mstar>1e12 Msun), with Mhalo>3e14 Msun, favor instead models with a stellar profile flatter than a S\'{e}rsic one in the very inner regions (r<3-5 kpc), and a cored NFW or Einasto dark matter profile with median halo concentration a factor of ~2 or <1.3, respectively, higher than those typically predicted by N-body numerical simulations.Comment: 23 pages, 10 figures, 3 Appendices (with an extra 7 figures). ApJ, accepted. Main results in Figures 3, 5, 6,

    Modeling the galaxy/light-mass connection with cosmological simulations

    Get PDF
    I review some results on the galaxy/light-mass connection obtained by dissipationless simulations in combination with a simple, non-parametric model to connect halo circular velocity to the luminosity of the galaxy they would host. I focus on the galaxy-mass correlation and mass-to-light ratios obtained from galaxy up to cluster scales. The predictions of this simple scheme are shown to be in very good agreement with SDSS observations.Comment: proceedings of the 6th International Workshop on The Identification of Dark Matter, 11 - 16 September 2006, Rhodes Island, Greece; to be published by World Scientifi
    • 

    corecore