34,072 research outputs found

    Weak lighting functions and strong 26-surfaces

    Get PDF
    AbstractThe goal of this paper is to introduce the notion of weak lighting function in order to replicate the “continuous perception” associated with strong 26-surfaces. As a consequence, the continuous analogue defined ad hoc by Malgouyres and Bertrand only for these surfaces is extended for arbitrary objects, and the local characterization of finite strong 26-surfaces given in (Malgouyres and Bertrand, Int. J. Pattern Recognition Art. Intell. 13(4) (1999) 465–484) is generalized to possibly infinite surfaces. Moreover, weak lighting functions also replicate the “continuous perception” associated with (α,β)-surfaces, (α,β)≠(6,6), since they are generalizing the lighting functions previously defined by the authors

    A digital index theorem

    Get PDF
    Proc. of the 7th Int. Workshop on Combinatorial Image Analysis. IWCIA00. Caen. France. July 2000.This paper is devoted to prove a Digital Index Theorem for digital (n − 1)-manifolds in a digital space (Rn, f), where f belongs to a large family of lighting functions on the standard cubical decomposition Rn of the n-dimensional Euclidean space. As an immediate consequence we obtain the corresponding theorems for all (α, β)-surfaces of Kong-Roscoe, with α, β ∈ {6, 18, 26} and (α, β) 6≠(6, 6),(18, 26),(26, 26), as well as for the strong 26-surfaces of Bertrand-Malgouyres.Dirección General de Investigación Científica y TécnicaDirección General de Enseñanza Superio

    Learning 3D Human Pose from Structure and Motion

    Full text link
    3D human pose estimation from a single image is a challenging problem, especially for in-the-wild settings due to the lack of 3D annotated data. We propose two anatomically inspired loss functions and use them with a weakly-supervised learning framework to jointly learn from large-scale in-the-wild 2D and indoor/synthetic 3D data. We also present a simple temporal network that exploits temporal and structural cues present in predicted pose sequences to temporally harmonize the pose estimations. We carefully analyze the proposed contributions through loss surface visualizations and sensitivity analysis to facilitate deeper understanding of their working mechanism. Our complete pipeline improves the state-of-the-art by 11.8% and 12% on Human3.6M and MPI-INF-3DHP, respectively, and runs at 30 FPS on a commodity graphics card.Comment: ECCV 2018. Project page: https://www.cse.iitb.ac.in/~rdabral/3DPose

    Solving the Monge-Amp\`ere Equations for the Inverse Reflector Problem

    Full text link
    The inverse reflector problem arises in geometrical nonimaging optics: Given a light source and a target, the question is how to design a reflecting free-form surface such that a desired light density distribution is generated on the target, e.g., a projected image on a screen. This optical problem can mathematically be understood as a problem of optimal transport and equivalently be expressed by a secondary boundary value problem of the Monge-Amp\`ere equation, which consists of a highly nonlinear partial differential equation of second order and constraints. In our approach the Monge-Amp\`ere equation is numerically solved using a collocation method based on tensor-product B-splines, in which nested iteration techniques are applied to ensure the convergence of the nonlinear solver and to speed up the calculation. In the numerical method special care has to be taken for the constraint: It enters the discrete problem formulation via a Picard-type iteration. Numerical results are presented as well for benchmark problems for the standard Monge-Amp\`ere equation as for the inverse reflector problem for various images. The designed reflector surfaces are validated by a forward simulation using ray tracing.Comment: 28 pages, 8 figures, 2 tables; Keywords: Inverse reflector problem, elliptic Monge-Amp\`ere equation, B-spline collocation method, Picard-type iteration; Minor revision: reference [59] to a recent preprint has been added and a few typos have been correcte

    AirCode: Unobtrusive Physical Tags for Digital Fabrication

    Full text link
    We present AirCode, a technique that allows the user to tag physically fabricated objects with given information. An AirCode tag consists of a group of carefully designed air pockets placed beneath the object surface. These air pockets are easily produced during the fabrication process of the object, without any additional material or postprocessing. Meanwhile, the air pockets affect only the scattering light transport under the surface, and thus are hard to notice to our naked eyes. But, by using a computational imaging method, the tags become detectable. We present a tool that automates the design of air pockets for the user to encode information. AirCode system also allows the user to retrieve the information from captured images via a robust decoding algorithm. We demonstrate our tagging technique with applications for metadata embedding, robotic grasping, as well as conveying object affordances.Comment: ACM UIST 2017 Technical Paper

    Temporal Modulation of Traveling Waves in the Flow Between Rotating Cylinders With Broken Azimuthal Symmetry

    Full text link
    The effect of temporal modulation on traveling waves in the flows in two distinct systems of rotating cylinders, both with broken azimuthal symmetry, has been investigated. It is shown that by modulating the control parameter at twice the critical frequency one can excite phase-locked standing waves and standing-wave-like states which are not allowed when the system is rotationally symmetric. We also show how previous theoretical results can be extended to handle patterns such as these, that are periodic in two spatial direction.Comment: 17 pages in LaTeX, 22 figures available as postscript files from http://www.esam.nwu.edu/riecke/lit/lit.htm

    An evaluation methodology for assessing artificial lighting quality in architecture: The case of Apikam

    Get PDF
    Thesis (Doctoral)--İzmir Institute of Technology, Architecture, İzmir, 2007Includes bibliographical references (leaves: 125-134)Text in English;Abstract: Turkish and Englishxiii, 269 leavesThe aim of this dissertation is to design a qualitative evaluation methodology for artificial lighting. There is a problem in the general characteristics of lighting industry, deriving from its technical vocabulary which is mainly based on quantitative parameters, values, and systems which in some ways are neglecting the main ingredient of architecture: the user. The evaluation methodology that is subject of this dissertation was considered as a qualitative approach to lighting quality. The study benefited from the knowledge of environmental psychology, concerning the effect of lighting on behaviors and tried to integrate it to the process of assessing lighting quality. The methodology depends on data collection by various means such as surveys, measurements, and computer simulations. To test the qualitative evaluation methodology, a case study was designed in the exhibition hall of the Ahmet Piritina City Archive and Museum (APIKAM) in zmir. The evaluation methodology was successfully operated and made a detailed evaluation possible on the two lighting systems in the exhibition hall of APIKAM. Both lighting systems failed in functional aspects, because of the high intensity of light they produce, the emission of UV and IR wavelengths, and glare problems. They are simply not appropriate for the selected environment, where organic . based materials are exhibited. Recessed fluorescent lighting system failed in physiological aspects as it triggers less arousal than halogen spotlighting system. Both lighting systems have failed in attention scale under psychological aspects, because none of them supply continuity in the order of visual clues that match with the sequential order of the exhibition. For aesthetic and environmental judgments, the results of the survey showed that halogen lighting system was the preferred one by the subjects. For the sub-part of feelings, recessed fluorescent lighting systems failed, because it influenced generally negative feelings, while positive feelings are generally influenced by halogen spotlighting system
    corecore