3,992 research outputs found

    Weak Interference Detection with Signal Cancellation in Satellite Communications

    Get PDF
    Interference is identified as a critical issue for satellite communication (SATCOM) systems and services. There is a growing concern in the satellite industry to manage and mitigate interference efficiently. While there are efficient techniques to monitor strong interference in SATCOM, weak interference is not so easily detected because of its low interference to signal and noise ratio (ISNR). To address this issue, this paper proposes and develops a technique which takes place on-board the satellite by decoding the desired signal, removing it from the total received signal and applying an Energy Detector (ED) in the remaining signal for the detection of interference. Different from the existing literature, this paper considers imperfect signal cancellation, examining how the decoding errors affect the sensing performance, derives the expressions for the probability of false alarm and provides a set of simulations results, verifying the efficiency of the technique

    NOMA and interference limited satellite scenarios

    Get PDF
    This paper deals with the problem of non-orthogonal multiple access (NOMA) in multibeam satellite systems, where the signals are jointly precoded. It is considered that the number of frames that are simultaneously transmitted is higher than the number of feeds, reducing the precoding interference mitigation capabilities as the system becomes overloaded. In order to solve this problem, we assume that the satellite user terminals are able to perform multi-user detection to mitigate the interference. In the current NOMA approach, it is assumed a successive interference cancellation (SIC) receiver. To increase the spectral efficiency, this paper investigates NOMA with simultaneous non-unique detection (SND). Compared to the case where user terminals perform single user detection (SUD), conventional scheduling heuristic rules do not longer apply in this scenario. Therefore, different scheduling algorithms are proposed considering both SIC and SND strategies. As the numerical evaluations show, SND yields larger average data rates than the SIC receiver. Concerning the scheduling, the best strategy is to pair users with highly correlated channels and the lowest channel gain difference. It is also shown that the sum-rate can be increased in overloaded satellite systems with respect to satellite scenarios, where the number of transmitted frames and feeds is the same.Peer ReviewedPostprint (author's final draft

    Multiuser Detection For Asynchronous ARGOS Signals

    Get PDF
    In this paper, we investigate the application of multiuser detection techniques to a Low Polar Orbit (LPO) mobile satellite used in the ARGOS system. These techniques are used to mitigate the multiple access interference in the uplink transmission of the system. Unlike CDMA, due to the Doppler Effect, each signal has a different received carrier frequency and a different propagation delay. Multiuser detection techniques are proposed for asynchronous transmission in ARGOS system: the maximum likelihood detector, the conventional detector, and the sequential interference cancellation detector, as solutions to tackle the interference effects. Bit Error Rate performance graphs are shown for these techniques

    What effect does network size have on NRTK positioning?

    No full text
    The Network Real Time Kinematic (NRTK) positioning is nowadays a very common practice not only in academia but also in the professional world. To support the users several networks of Continuous Operating Reference Stations (CORSs) were born. These networks offer real-time services for NRTK positioning, providing a centimetric positioning accuracy with an average distance of 25-35 kms between the reference stations. But what is the effective distance between reference stations that allows to achieve the precision required for real-time positioning, using both geodetic and GIS receivers? How the positional accuracy changes with increasing distances between CORS? Can a service of geostationary satellites, such as the European EGNOS, be an alternative to the network positioning for medium-low cost receivers? These are only some of the questions that the Authors try to answer in this articl

    Using heterogeneous satellites for passive detection of moving aerial target

    Get PDF
    Passive detection of a moving aerial target is critical for intelligent surveillance. Its implementation can use signals transmitted from satellites. Nowadays, various types of satellites co-exist which can be used for passive detection. As a result, a satellite signal receiver may receive signals from multiple heterogeneous satellites, causing difficult in echo signal detection. In this paper, a passive moving aerial target detection method leveraging signals from multiple heterogeneous satellites is proposed. In the proposed method, a plurality of direct wave signals is separated in a reference channel first. Then, an adaptive filter with normalized least-mean-square (NLMS) is adopted to suppress direct-path interference (DPI) and multi-path interference (MPI) in a surveillance channel. Next, the maximum values of the cross ambiguity function (CAF) and the fourth order cyclic cumulants cross ambiguity function (FOCCCAF) correspond into each separated direct wave signal and echo signal will be utilized as the detection statistic of each distributed sensor. Finally, final detection probabilities are calculated by decision fusion based on results from distributed sensors. To evaluate the performance of the proposed method, extensive simulation studies are conducted. The corresponding simulation results show that the proposed fusion detection method can significantly improve the reliability of moving aerial target detection using multiple heterogeneous satellites. Moveover, we also show that the proposed detection method is able to significantly improve the detection performance by using multiple collaborative heterogeneous satellites

    The Impact of Interference on GNSS Receiver Observables – A Running Digital Sum Based Simple Jammer Detector

    Get PDF
    A GNSS-based navigation system relies on externally received information via a space-based Radio Frequency (RF) link. This poses susceptibility to RF Interference (RFI) and may initiate failure states ranging from degraded navigation accuracy to a complete signal loss condition. To guarantee the integrity of the received GNSS signal, the receiver should either be able to function in the presence of RFI without generating misleading information (i.e., offering a navigation solution within an accuracy limit), or the receiver must detect RFI so that some other means could be used as a countermeasure in order to ensure robust and accurate navigation. Therefore, it is of utmost importance to identify an interference occurrence and not to confuse it with other signal conditions, for example, indoor or deep urban canyon, both of which have somewhat similar impact on the navigation performance. Hence, in this paper, the objective is to investigate the effect of interference on different GNSS receiver observables in two different environments: i. an interference scenario with an inexpensive car jammer, and ii. an outdoor-indoor scenario without any intentional interference. The investigated observables include the Automatic Gain Control (AGC) measurements, the digitized IF (Intermediate Frequency) signal levels, the Delay Locked Loop and the Phase Locked Loop discriminator variances, and the Carrier-to-noise density ratio (C/N0) measurements. The behavioral pattern of these receiver observables is perceived in these two different scenarios in order to comprehend which of those observables would be able to separate an interference situation from an indoor scenario, since in both the cases, the resulting positioning accuracy and/or availability are affected somewhat similarly. A new Running Digital Sum (RDS) -based interference detection method is also proposed herein that can be used as an alternate to AGC-based interference detection. It is shown in this paper that it is not at all wise to consider certain receiver observables for interference detection (i.e., C/N0); rather it is beneficial to utilize certain specific observables, such as the RDS of raw digitized signal levels or the AGC-based observables that can uniquely identify a critical malicious interference occurrence

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature
    • 

    corecore