52 research outputs found

    Selection Lemmas for various geometric objects

    Full text link
    Selection lemmas are classical results in discrete geometry that have been well studied and have applications in many geometric problems like weak epsilon nets and slimming Delaunay triangulations. Selection lemma type results typically show that there exists a point that is contained in many objects that are induced (spanned) by an underlying point set. In the first selection lemma, we consider the set of all the objects induced (spanned) by a point set PP. This question has been widely explored for simplices in Rd\mathbb{R}^d, with tight bounds in R2\mathbb{R}^2. In our paper, we prove first selection lemma for other classes of geometric objects. We also consider the strong variant of this problem where we add the constraint that the piercing point comes from PP. We prove an exact result on the strong and the weak variant of the first selection lemma for axis-parallel rectangles, special subclasses of axis-parallel rectangles like quadrants and slabs, disks (for centrally symmetric point sets). We also show non-trivial bounds on the first selection lemma for axis-parallel boxes and hyperspheres in Rd\mathbb{R}^d. In the second selection lemma, we consider an arbitrary mm sized subset of the set of all objects induced by PP. We study this problem for axis-parallel rectangles and show that there exists an point in the plane that is contained in m324n4\frac{m^3}{24n^4} rectangles. This is an improvement over the previous bound by Smorodinsky and Sharir when mm is almost quadratic

    New Constructions of Weak ε-Nets

    Get PDF
    A finite set NRdN \subset \R^d is a {\em weak \eps-net} for an nn-point set XRdX\subset \R^d (with respect to convex sets) if NN intersects every convex set KK with |K\,\cap\,X|\geq \eps n. We give an alternative, and arguably simpler, proof of the fact, first shown by Chazelle et al., that every point set XX in Rd\R^d admits a weak \eps-net of cardinality O(\eps^{-d}\polylog(1/\eps)). Moreover, for a number of special point sets (e.g., for points on the moment curve), our method gives substantially better bounds. The construction yields an algorithm to construct such weak \eps-nets in time $O(n\ln(1/\eps))

    An Improved Bound for Weak Epsilon-Nets in the Plane

    Full text link
    We show that for any finite set PP of points in the plane and ϵ>0\epsilon>0 there exist O(1ϵ3/2+γ)\displaystyle O\left(\frac{1}{\epsilon^{3/2+\gamma}}\right) points in R2{\mathbb{R}}^2, for arbitrary small γ>0\gamma>0, that pierce every convex set KK with KPϵP|K\cap P|\geq \epsilon |P|. This is the first improvement of the bound of O(1ϵ2)\displaystyle O\left(\frac{1}{\epsilon^2}\right) that was obtained in 1992 by Alon, B\'{a}r\'{a}ny, F\"{u}redi and Kleitman for general point sets in the plane.Comment: A preliminary version to appear in the proceedings of FOCS 201

    Towards a robust, effective and resource-efficient machine learning technique for IoT security monitoring.

    Get PDF
    Internet of Things (IoT) devices are becoming increasingly popular and an integral part of our everyday lives, making them a lucrative target for attackers. These devices require suitable security mechanisms that enable robust and effective detection of attacks. Machine learning (ML) and its subdivision Deep Learning (DL) methods offer a promise, but they can be computationally expensive in providing better detection for resource-constrained IoT devices. Therefore, this research proposes an optimization method to train ML and DL methods for effective and efficient security monitoring of IoT devices. It first investigates the feasibility of the Light Gradient Boosting Machine (LGBM) for attack detection in IoT environments, proposing an optimization procedure to obtain its effective counterparts. The trained LGBM can successfully discern attacks and regular traffic in various IoT benchmark datasets used in this research. As LGBM is a traditional ML technique, it may be difficult to learn complex network traffic patterns present in IoT datasets. Therefore, we further examine Deep Neural Networks (DNNs), proposing an effective and efficient DNN-based security solution for IoT security monitoring to leverage more resource savings and accurate attack detection. Investigation results are promising, as the proposed optimization method exploits the mini-batch gradient descent with simulated micro-batching in building effective and efficient DNN-based IoT security solutions. Following the success of DNN for effective and efficient attack detection, we further exploit it in the context of adversarial attack resistance. The resulting DNN is more resistant to adversarial samples than its benchmark counterparts and other conventional ML methods. To evaluate the effectiveness of our proposal, we considered on-device learning in federated learning settings, using decentralized edge devices to augment data privacy in resource-constrained environments. To this end, the performance of the method was evaluated against various realistic IoT datasets (e.g. NBaIoT, MNIST) on virtual and realistic testbed set-ups with GB-BXBT-2807 edge-computing-like devices. The experimental results show that the proposed method can reduce memory and time usage by 81% and 22% in the simulated environment of virtual workers compared to its benchmark counterpart. In the realistic testbed scenario, it saves 6% of memory footprints with a reduction of execution time by 15%, while maintaining a better and state-of-the-art accuracy

    Automatic detection of pathological regions in medical images

    Get PDF
    Medical images are an essential tool in the daily clinical routine for the detection, diagnosis, and monitoring of diseases. Different imaging modalities such as magnetic resonance (MR) or X-ray imaging are used to visualize the manifestations of various diseases, providing physicians with valuable information. However, analyzing every single image by human experts is a tedious and laborious task. Deep learning methods have shown great potential to support this process, but many images are needed to train reliable neural networks. Besides the accuracy of the final method, the interpretability of the results is crucial for a deep learning method to be established. A fundamental problem in the medical field is the availability of sufficiently large datasets due to the variability of different imaging techniques and their configurations. The aim of this thesis is the development of deep learning methods for the automatic identification of anomalous regions in medical images. Each method is tailored to the amount and type of available data. In the first step, we present a fully supervised segmentation method based on denoising diffusion models. This requires a large dataset with pixel-wise manual annotations of the pathological regions. Due to the implicit ensemble characteristic, our method provides uncertainty maps to allow interpretability of the model’s decisions. Manual pixel-wise annotations face the problems that they are prone to human bias, hard to obtain, and often even unavailable. Weakly supervised methods avoid these issues by only relying on image-level annotations. We present two different approaches based on generative models to generate pixel-wise anomaly maps using only image-level annotations, i.e., a generative adversarial network and a denoising diffusion model. Both perform image-to-image translation between a set of healthy and a set of diseased subjects. Pixel-wise anomaly maps can be obtained by computing the difference between the original image of the diseased subject and the synthetic image of its healthy representation. In an extension of the diffusion-based anomaly detection method, we present a flexible framework to solve various image-to-image translation tasks. With this method, we managed to change the size of tumors in MR images, and we were able to add realistic pathologies to images of healthy subjects. Finally, we focus on a problem frequently occurring when working with MR images: If not enough data from one MR scanner are available, data from other scanners need to be considered. This multi-scanner setting introduces a bias between the datasets of different scanners, limiting the performance of deep learning models. We present a regularization strategy on the model’s latent space to overcome the problems raised by this multi-site setting

    VLSI neural networks for computer vision

    Get PDF

    On the Beer index of convexity and its variants

    Get PDF
    Let SS be a subset of Rd\mathbb{R}^d with finite positive Lebesgue measure. The Beer index of convexity b(S)\operatorname{b}(S) of SS is the probability that two points of SS chosen uniformly independently at random see each other in SS. The convexity ratio c(S)\operatorname{c}(S) of SS is the Lebesgue measure of the largest convex subset of SS divided by the Lebesgue measure of SS. We investigate the relationship between these two natural measures of convexity. We show that every set SR2S\subseteq\mathbb{R}^2 with simply connected components satisfies b(S)αc(S)\operatorname{b}(S)\leq\alpha\operatorname{c}(S) for an absolute constant α\alpha, provided b(S)\operatorname{b}(S) is defined. This implies an affirmative answer to the conjecture of Cabello et al. that this estimate holds for simple polygons. We also consider higher-order generalizations of b(S)\operatorname{b}(S). For 1kd1\leq k\leq d, the kk-index of convexity bk(S)\operatorname{b}_k(S) of a set SRdS\subseteq\mathbb{R}^d is the probability that the convex hull of a (k+1)(k+1)-tuple of points chosen uniformly independently at random from SS is contained in SS. We show that for every d2d\geq 2 there is a constant β(d)>0\beta(d)>0 such that every set SRdS\subseteq\mathbb{R}^d satisfies bd(S)βc(S)\operatorname{b}_d(S)\leq\beta\operatorname{c}(S), provided bd(S)\operatorname{b}_d(S) exists. We provide an almost matching lower bound by showing that there is a constant γ(d)>0\gamma(d)>0 such that for every ε(0,1)\varepsilon\in(0,1) there is a set SRdS\subseteq\mathbb{R}^d of Lebesgue measure 11 satisfying c(S)ε\operatorname{c}(S)\leq\varepsilon and bd(S)γεlog21/εγc(S)log21/c(S)\operatorname{b}_d(S)\geq\gamma\frac{\varepsilon}{\log_2{1/\varepsilon}}\geq\gamma\frac{\operatorname{c}(S)}{\log_2{1/\operatorname{c}(S)}}.Comment: Final version, minor revisio

    Scalable multi-objective optimization

    Get PDF
    This thesis is concerned with the three open in multi-objective optimization: (i) the development of strategies for dealing with problems with many objective functions; (ii) the comprehension and solution of the model-building issues of current MOEDAs, and; (iii) the formulation of stopping criteria for multi-objective optimizers. We argue about what elements of MOEDAs should be modified in order to achieve a substantial improvement on their performance and scalability. However, in order to supply a solid ground for that discussion, some other elements are to be discussed as well. In particular, this thesis: sketches the supporting theoretical corpus and the fundamentals of MOEA and MOEDA algorithms; analyzes the scalability issue of MOEAs from both theoretical and experimental points of view; discusses the possible directions of improvement for MOEAs’ scalability, presenting the current trends of research; gives reasons of why EDAs can be used as a foundation for achieving a sizable improvement with regard to the scalability issue; examines the model-building issue in depth, hypothesizing on how it affects MOEDAs performance; proposes a novel model-building algorithm, the model-building growing neural gas (MBGNG), which fulfill the requirements for a new approach derived from the previous debate, and; introduces a novel MOEDA, the multi-objective neural EDA, that is constructed using MB-GNG as foundation. The formulation of an strategy for stopping multi-objective optimizers became obvious and necessary as this thesis was developed. The lack of an adequate stopping criterion made the rendered any experimentation that had to do with many objectives a rather cumbersome task. That is why it was compulsory to deal with this issue in order to proceed with further studies. In this regard, the thesis: provides an updated and exhaustive state-of-the-art of this matter; examines the properties and characteristics that a given stopping criterion should exhibit; puts forward a new stopping criterion, denominated MGBM, after the authors last names, that has a small computational footprint, and; experimentally validates MGBM in a set of experiments. Theoretical discussions and algorithm proposals are experimentally contrasted with current state-of-the-art approaches when required. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------Muchas actividades humanas están relacionadas con la elaboración de artefactos cuyas características, organización y/o costes de producción, etc., se deben ajustar en la manera más eficiente posible. Este hecho ha creado la necesidad de tener herramientas matemáticas y computacionales capaces de tratar estos problemas, lo cual ha impulsado el desarrollo de distintas áreas de investigación interrelacionadas, como, por ejemplo, la optimización, programación matemática, investigación de operaciones, etc. El concepto de optimización se puede formular en términos matemáticos como el proceso de buscar una o más soluciones factibles que se correspondan con los valores extremos de una o varias funciones. La mayor parte de los problemas de optimización reales implican la optimización de más de una función a la vez. Esta clase de problemas se conoce como problemas de optimización multi-objetivo (POM). Existe una clase de POM que es particularmente atractivo debido a su complejidad inherente: los denominados problemas de muchos objetivos. Estos son problemas con un número relativamente elevado de funciones objetivo. Numerosos experimentos han mostrado que los métodos “tradicionales” no logran un desempeño adecuado debido a la relación intensamente exponencial entre la dimensión del conjunto objetivo y la cantidad de recursos requeridos para resolver el problema correctamente. Estos problemas tienen una naturaleza poco intuitiva y, en particular, sus soluciones son difíciles de visualizar por un tomador de decisiones humano. Sin embargo, son bastante comunes en la práctica (Stewart et al., 2008). La optimización multi-objetivo ha recibido una importante atención por parte de la comunidad dedicada a los algoritmos evolutivos (Coello Coello et al., 2007). Sin embargo, se ha hecho patente la necesidad de buscar alternativas para poder tratar con los problemas de muchos objetivos. Los algoritmos de estimación de distribución (EDAs, por sus siglas en inglés) (Lozano et al., 2006) son buenos candidatos para esa tarea. Estos algoritmos se han presentado como una revolución en el campo de la computación evolutiva. Ellos sustituyen la aplicación de operadores inspirados en la selección natural por la síntesis de un modelo estadístico. Este modelo es muestreado para generar nuevos elementos y así proseguir con la búsqueda de soluciones. Sin embargo, los EDAs multi-objetivo (MOEDAs) no han logrado cumplir las expectativas creadas a priori. El leit motif de esta tesis se puede resumir en que la causa principal del bajo rendimiento MOEDAs se debe a los algoritmos de aprendizaje automático que se aplican en la construcción de modelos estadísticos. Los trabajos existentes hasta el momento han tomado una aproximación de “caja negra” al problema de la construcción de modelos. Por esa razón, se aplican métodos de aprendizaje automático ya existentes sin modificación alguna, sin percatarse que el problema de la construcción de modelos para EDAs tiene unos requisitos propios que en varios casos son contradictorios con el contexto original de aplicación de los mencionados algoritmos. En particular, hay propiedades compartidas por la mayoría de los enfoques de aprendizaje automático que podrían evitar la obtención de una mejora sustancial en el resultado de los MOEDAs. Ellas son: el tratamiento incorrecto de los valores atípicos (outliers) en el conjunto de datos; tendencia a la pérdida de la diversidad de la población, y; exceso de esfuerzo computacional dedicado a la búsqueda de un modelo óptimo. Estos problemas, aunque ya están presentes en los EDAs de un solo objetivo, se hacen patentes al escalar a problemas de varios objetivos y, en particular, a muchos objetivos. Además, con el aumento de la cantidad de objetivos con frecuencia esta situación se ve agravada por las consecuencias de la “maldición de la dimensionalidad”. La cuestión de los valores atípicos en los datos es un buen ejemplo de como la comunidad no ha notado esta diferencia. En el contexto tradicional del aprendizaje automático los valores extremos son considerados como datos ruidosos o irrelevantes y, por tanto, deben ser evitados. Sin embargo, los valores atípicos en los datos de la construcción de modelos representan las regiones recién descubiertas o soluciones candidatas del conjunto de decisión y por lo tanto deben ser explorados. En este caso, los casos aislados debe ser al menos igualmente representados por el modelo con respecto a los que están formando grupos. Sobre la base de estos razonamientos se estructuran los principales resultados obtenidos en el desarrollo de la tesis. A continuación se enumeran brevemente los mismos mencionando las referencias principales de los mismos. Comprensión del problema de la construcción de modelos en MOEDAs (Martí et al., 2010a, 2008b, 2009c). Se analiza que los EDAs han asumido incorrectamente que la construcción de modelos es un problema tradicional de aprendizaje automático. En el trabajo se muestra experimentalmente la hipótesis. Growing Neural Gas: una alternativa viable para construcción de modelos (Martí et al., 2008c). Se propone el Model-Building Growing Neural Gas network (MB-GNG), una modificación de las redes neuronales tipo Growing Neural Gas. MB-GNG tiene las propiedades requeridas para tratar correctamente la construcción de modelos. MONEDA: mejorando el desempeño de los MOEDAs (Martí et al., 2008a, 2009b, 2010c). El Multi-objective Optimization Neural EDA (MONEDA) fue ideado con el fin de hacer frente a los problemas arriba descritos de los MOEDAs y, por lo tanto, mejorar la escalabilidad de los MOEDAs. MONEDA utiliza MB-GNG para la construcción de modelos. Gracias a su algoritmo específico de construcción de modelos, la preservación de las élites de individuos de la población y su mecanismo de sustitución de individuos MONEDA es escalable capaz de resolver POMs continuos de muchos objetivos con un mejor desepeño que algoritmos similares a un coste computacional menor. Esta propuesta fue nominada a mejor trabajo en GECCO’2008. MONEDA en problemas de alta complejidad (Martí et al., 2009d). En este caso se lleva a cabo una amplia experimentación para comprender como las características de MONEDA provocan una mejora en el desempeño del algoritmo, y si sus resultados mejoran los obtenidos de otros enfoques. Se tratan problemas de alta complejidad. Estos experimentos demostraron que MONEDA produce resultados sustancialmente mejores que los algoritmos similares a una menor coste computacional. Nuevos paradigmas de aprendizaje: MARTEDA (Martí et al., 2010d). Si bien MB-GNG y MONEDA mostraron que la vía del tratamiento correcto de la construcción de modelos era una de las formas de obtener mejores resultados, ellos no evadían por completo el punto esencial: el paradigma de aprendizaje empleado. Al combinar un paradigma de aprendizaje automático alternativo, en particular, la Teoría de Resonancia Adaptativa, se trata a este asunto desde su raíz. En este respecto se han obtenido algunos resultados preliminares alentadores. Criterios de parada y convergencia (Martí et al., 2007, 2009a, 2010e). Con la realización de los experimentos anteriores nos percatamos de la falta de de un criterio de parada adecuado y que esta es un área inexplorada en el ámbito de la investigación en algoritmos evolutivos multi-objectivo. Abordamos esta cuestión proponiendo una serie de criterios de parada que se han demostrado efectivos en problemas sintéticos y del mundo real
    corecore