27 research outputs found

    Kleisli morphisms and randomized congruences for the Giry monad

    Get PDF
    AbstractStochastic relations are the Kleisli morphisms for the Giry monad. This paper proposes the study of the associated morphisms and congruences. The relationship between kernels of these morphisms and congruences is studied, and a unique factorization of a morphism through this kernel is shown to exist. This study is based on an investigation into countably generated equivalence relations on the space of all subprobabilities. Operations on these relations are investigated quite closely. This utilizes positive convex structures and indicates cross-connections to Eilenberg–Moore algebras for the Giry monad. Hennessy–Milner logic serves as an illustration for randomized morphisms and congruences

    Codensity Lifting of Monads and its Dual

    Full text link
    We introduce a method to lift monads on the base category of a fibration to its total category. This method, which we call codensity lifting, is applicable to various fibrations which were not supported by its precursor, categorical TT-lifting. After introducing the codensity lifting, we illustrate some examples of codensity liftings of monads along the fibrations from the category of preorders, topological spaces and extended pseudometric spaces to the category of sets, and also the fibration from the category of binary relations between measurable spaces. We also introduce the dual method called density lifting of comonads. We next study the liftings of algebraic operations to the codensity liftings of monads. We also give a characterisation of the class of liftings of monads along posetal fibrations with fibred small meets as a limit of a certain large diagram.Comment: Extended version of the paper presented at CALCO 2015, accepted for publication in LMC

    Logical Relations for Monadic Types

    Full text link
    Logical relations and their generalizations are a fundamental tool in proving properties of lambda-calculi, e.g., yielding sound principles for observational equivalence. We propose a natural notion of logical relations able to deal with the monadic types of Moggi's computational lambda-calculus. The treatment is categorical, and is based on notions of subsconing, mono factorization systems, and monad morphisms. Our approach has a number of interesting applications, including cases for lambda-calculi with non-determinism (where being in logical relation means being bisimilar), dynamic name creation, and probabilistic systems.Comment: 83 page

    Generalized labelled Markov processes, coalgebraically

    Get PDF
    Coalgebras of measurable spaces are of interest in probability theory as a formalization of Labelled Markov Processes (LMPs). We discuss some general facts related to the notions of bisimulation and cocongruence on these systems, providing a faithful characterization of bisimulation on LMPs on generic measurable spaces. This has been used to prove that bisimilarity on single LMPs is an equivalence, without assuming the state space to be analytic. As the second main contribution, we introduce the first specification rule format to define well-behaved composition operators for LMPs. This allows one to define process description languages on LMPs which are always guaranteed to have a fully-abstract semantics

    A theory for the semantics of stochastic and non-deterministic continuous systems

    Get PDF
    Preprint de capítulo del libro Lecture Notes in Computer Science book series (LNCS, volume 8453)The description of complex systems involving physical or biological components usually requires to model complex continuous behavior induced by variables such as time, distance, speed, temperature, alkalinity of a solution, etc. Often, such variables can be quantified probabilistically to better understand the behavior of the complex systems. For example, the arrival time of events may be considered a Poisson process or the weight of an individual may be assumed to be distributed according to a log-normal distribution. However, it is also common that the uncertainty on how these variables behave makes us prefer to leave out the choice of a particular probability and rather model it as a purely non-deterministic decision, as it is the case when a system is intended to be deployed in a variety of very different computer or network architectures. Therefore, the semantics of these systems needs to be represented by a variant of probabilistic automata that involves continuous domains on the state space and the transition relation. In this paper, we provide a survey on the theory of such kind of models. We present the theory of the so-called labeled Markov processes (LMP) and its extension with internal non-determinism (NLMP). We show that in these complex domains, the bisimulation relation can be understood in different manners. We show the relation between the different bisimulations and try to understand their expressiveness through examples. We also study variants of Hennessy-Milner logic thatprovides logical characterizations of some of these bisimulations.Supported by ANPCyT project PICT-2012-1823, SeCyT-UNC projects 05/B284 and 05/B497 and program 05/BP02, and EU 7FP grant agreement 295261 (MEALS).http://link.springer.com/chapter/10.1007%2F978-3-662-45489-3_3acceptedVersionFil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: D'Argenio, Pedro Rubén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: D'Argenio, Pedro Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Sánchez Terraf, Pedro Octavio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Sánchez Terraf, Pedro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Wolovick, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Estadística y Probabilida

    Dirichlet is Natural

    Get PDF
    International audienceGiry and Lawvere's categorical treatment of probabilities, based on the probabilistic monad G, offer an elegant and hitherto unexploited treatment of higher-order probabilities. The goal of this paper is to follow this formulation to reconstruct a family of higher-order probabilities known as the Dirichlet process. This family is widely used in non-parametric Bayesian learning. Given a Polish space X, we build a family of higher-order probabilities in G(G(X)) indexed by M * (X) the set of non-zero finite measures over X. The construction relies on two ingredients. First, we develop a method to map a zero-dimensional Polish space X to a projective system of finite approximations, the limit of which is a zero-dimensional compactification of X. Second, we use a functorial version of Bochner's probability extension theorem adapted to Polish spaces, where consistent systems of probabilities over a projective system give rise to an actual probability on the limit. These ingredients are combined with known combinatorial properties of Dirichlet processes on finite spaces to obtain the Dirichlet family D X on X. We prove that the family D X is a natural transformation from the monad M * to G • G over Polish spaces, which in particular is continuous in its parameters. This is an improvement on extant constructions of D X [17,26]
    corecore