415 research outputs found

    Project scheduling under uncertainty using fuzzy modelling and solving techniques

    Get PDF
    In the real world, projects are subject to numerous uncertainties at different levels of planning. Fuzzy project scheduling is one of the approaches that deal with uncertainties in project scheduling problem. In this paper, we provide a new technique that keeps uncertainty at all steps of the modelling and solving procedure by considering a fuzzy modelling of the workload inspired from the fuzzy/possibilistic approach. Based on this modelling, two project scheduling techniques, Resource Constrained Scheduling and Resource Leveling, are considered and generalized to handle fuzzy parameters. We refer to these problems as the Fuzzy Resource Constrained Project Scheduling Problem (FRCPSP) and the Fuzzy Resource Leveling Problem (FRLP). A Greedy Algorithm and a Genetic Algorithm are provided to solve FRCPSP and FRLP respectively, and are applied to civil helicopter maintenance within the framework of a French industrial project called Helimaintenance

    Axiomatization and Models of Scientific Theories

    Get PDF
    In this paper we discuss two approaches to the axiomatization of scien- tific theories in the context of the so called semantic approach, according to which (roughly) a theory can be seen as a class of models. The two approaches are associated respectively to Suppes’ and to da Costa and Chuaqui’s works. We argue that theories can be developed both in a way more akin to the usual mathematical practice (Suppes), in an informal set theoretical environment, writing the set theoretical predicate in the language of set theory itself or, more rigorously (da Costa and Chuaqui), by employing formal languages that help us in writing the postulates to define a class of structures. Both approaches are called internal, for we work within a mathematical framework, here taken to be first-order ZFC. We contrast these approaches with an external one, here discussed briefly. We argue that each one has its strong and weak points, whose discussion is relevant for the philosophical foundations of science

    On the max-algebraic core of a nonnegative matrix

    Get PDF
    The max-algebraic core of a nonnegative matrix is the intersection of column spans of all max-algebraic matrix powers. Here we investigate the action of a matrix on its core. Being closely related to ultimate periodicity of matrix powers, this study leads us to new modifications and geometric characterizations of robust, orbit periodic and weakly stable matrices.Comment: 27 page

    Robustness and Randomness

    Get PDF
    Robustness problems of computational geometry algorithms is a topic that has been subject to intensive research efforts from both computer science and mathematics communities. Robustness problems are caused by the lack of precision in computations involving floating-point instead of real numbers. This paper reviews methods dealing with robustness and inaccuracy problems. It discussed approaches based on exact arithmetic, interval arithmetic and probabilistic methods. The paper investigates the possibility to use randomness at certain levels of reasoning to make geometric constructions more robust
    corecore