230 research outputs found

    Digraph Coloring Games and Game-Perfectness

    Get PDF
    In this thesis the game chromatic number of a digraph is introduced as a game-theoretic variant of the dichromatic number. This notion generalizes the well-known game chromatic number of a graph. An extended model also takes into account relaxed colorings and asymmetric move sequences. Game-perfectness is defined as a game-theoretic variant of perfectness of a graph, and is generalized to digraphs. We examine upper and lower bounds for the game chromatic number of several classes of digraphs. In the last part of the thesis, we characterize game-perfect digraphs with small clique number, and prove general results concerning game-perfectness. Some results are verified with the help of a computer program that is discussed in the appendix

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    The computational complexity of rationalizing Pareto optimal choice behavior

    Get PDF
    We consider a setting where a coalition of individuals chooses one or several alternatives from each set in a collection of choice sets. We examine the computational complexity of Pareto rationalizability. Pareto rationalizability requires that we can endow each individual in the coalition with a preference relation such that the observed choices are Pareto efficient. We differentiate between the situation where the choice function is considered to select all Pareto optimal alternatives from a choice set and the situation where it only contains one or several Pareto optimal alternatives. In the former case we find that Pareto rationalizability is an NP-complete problem. For the latter case we demonstrate that, if we have no additional information on the individual preference relations, then all choice behavior is Pareto rationalizable. However, if we have such additional information, then Pareto rationalizability is again NP-complete. Our results are valid for any coalition of size greater or equal than two.

    The computational complexity of rationalizing Pareto optimal choice behavior.

    Get PDF
    We consider a setting where a coalition of individuals chooses one or several alternatives from each set in a collection of choice sets. We examine the computational complexity of Pareto rationalizability. Pareto rationalizability requires that we can endow each individual in the coalition with a preference relation such that the observed choices are Pareto efficient. We differentiate between the situation where the choice function is considered to select all Pareto optimal alternatives from a choice set and the situation where it only contains one or several Pareto optimal alternatives. In the former case we find that Pareto rationalizability is an NP-complete problem. For the latter case we demonstrate that, if we have no additional information on the individual preference relations, then all choice behavior is Pareto rationalizable. However, if we have such additional information, then Pareto rationalizability is again NP-complete. Our results are valid for any coalition of size greater or equal than two.

    Simulation Problems Over One-Counter Nets

    Get PDF
    One-counter nets (OCN) are finite automata equipped with a counter that can store non-negative integer values, and that cannot be tested for zero. Equivalently, these are exactly 1-dimensional vector addition systems with states. We show that both strong and weak simulation preorder on OCN are PSPACE-complete

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    • 

    corecore