24,540 research outputs found

    Thermodynamic Formalism for Topological Markov Chains on Borel Standard Spaces

    Full text link
    We develop a Thermodynamic Formalism for bounded continuous potentials defined on the sequence space X≡ENX\equiv E^{\mathbb{N}}, where EE is a general Borel standard space. In particular, we introduce meaningful concepts of entropy and pressure for shifts acting on XX and obtain the existence of equilibrium states as additive probability measures for any bounded continuous potential. Furthermore, we establish convexity and other structural properties of the set of equilibrium states, prove a version of the Perron-Frobenius-Ruelle theorem under additional assumptions on the regularity of the potential and show that the Yosida-Hewitt decomposition of these equilibrium states do not have a purely additive part. We then apply our results to the construction of invariant measures of time-homogeneous Markov chains taking values on a general Borel standard space and obtain exponential asymptotic stability for a class of Markov operators. We also construct conformal measures for an infinite collection of interacting random paths which are associated to a potential depending on infinitely many coordinates. Under an additional differentiability hypothesis, we show how this process is related after a proper scaling limit to a certain infinite dimensional diffusion.Comment: Accepted for publication in Discrete and Continuous Dynamical Systems. 23 page

    KT and HKT Geometries in Strings and in Black Hole Moduli Spaces

    Full text link
    Some selected applications of KT and HKT geometries in string theory, supergravity, black hole moduli spaces and hermitian geometry are reviewed. It is shown that the moduli spaces of a large class of five-dimensional supersymmetric black holes are HKT spaces. In hermitian geometry, it is shown that a compact, conformally balanced, strong KT manifold whose associated KT connection has holonomy contained in SU(n) is Calabi-Yau. The implication of this result in the context of some string compactifications is explained.Comment: 26 pages, Contribution to the Proceedings of the Bonn workshop on "Special Geometric Structures in String Theory", a change in terminology and some other minor change

    Formalising the pi-calculus using nominal logic

    Get PDF
    We formalise the pi-calculus using the nominal datatype package, based on ideas from the nominal logic by Pitts et al., and demonstrate an implementation in Isabelle/HOL. The purpose is to derive powerful induction rules for the semantics in order to conduct machine checkable proofs, closely following the intuitive arguments found in manual proofs. In this way we have covered many of the standard theorems of bisimulation equivalence and congruence, both late and early, and both strong and weak in a uniform manner. We thus provide one of the most extensive formalisations of a process calculus ever done inside a theorem prover. A significant gain in our formulation is that agents are identified up to alpha-equivalence, thereby greatly reducing the arguments about bound names. This is a normal strategy for manual proofs about the pi-calculus, but that kind of hand waving has previously been difficult to incorporate smoothly in an interactive theorem prover. We show how the nominal logic formalism and its support in Isabelle accomplishes this and thus significantly reduces the tedium of conducting completely formal proofs. This improves on previous work using weak higher order abstract syntax since we do not need extra assumptions to filter out exotic terms and can keep all arguments within a familiar first-order logic.Comment: 36 pages, 3 figure

    Learning-assisted Theorem Proving with Millions of Lemmas

    Full text link
    Large formal mathematical libraries consist of millions of atomic inference steps that give rise to a corresponding number of proved statements (lemmas). Analogously to the informal mathematical practice, only a tiny fraction of such statements is named and re-used in later proofs by formal mathematicians. In this work, we suggest and implement criteria defining the estimated usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine the large inference graph of the lemmas in the HOL Light and Flyspeck libraries, adding up to millions of the best lemmas to the pool of statements that can be re-used in later proofs. We show that in combination with learning-based relevance filtering, such methods significantly strengthen automated theorem proving of new conjectures over large formal mathematical libraries such as Flyspeck.Comment: journal version of arXiv:1310.2797 (which was submitted to LPAR conference
    • …
    corecore