1,821 research outputs found

    Weak second order explicit exponential Runge-Kutta methods for stochastic differential equations

    Get PDF
    We propose new explicit exponential Runge-Kutta methods for the weak approximation of solutions of stiff ItƓ stochastic differential equations (SDEs). We also consider the use of exponential Runge-Kutta methods in combination with splitting methods. These methods have weak order 2 for multidimensional, noncommutative SDEs with a semilinear drift term, whereas they are of order 2 or 3 for semilinear ordinary differential equations. These methods are A-stable in the mean square sense for a scalar linear test equation whose drift and diffusion terms have complex coefficients. We carry out numerical experiments to compare the performance of these methods with an existing explicit stabilized method of weak order 2

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs

    Full text link
    We introduce a new algebraic framework based on a modification (called exotic) of aromatic Butcher-series for the systematic study of the accuracy of numerical integrators for the invariant measure of a class of ergodic stochastic differential equations (SDEs) with additive noise. The proposed analysis covers Runge-Kutta type schemes including the cases of partitioned methods and postprocessed methods. We also show that the introduced exotic aromatic B-series satisfy an isometric equivariance property.Comment: 33 page

    Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging

    Get PDF
    We introduce a new class of integrators for stiff ODEs as well as SDEs. These integrators are (i) {\it Multiscale}: they are based on flow averaging and so do not fully resolve the fast variables and have a computational cost determined by slow variables (ii) {\it Versatile}: the method is based on averaging the flows of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables (iii) {\it Nonintrusive}: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale (iv) {\it Convergent over two scales}: strongly over slow processes and in the sense of measures over fast ones. We introduce the related notion of two-scale flow convergence and analyze the convergence of these integrators under the induced topology (v) {\it Structure preserving}: for stiff Hamiltonian systems (possibly on manifolds), they can be made to be symplectic, time-reversible, and symmetry preserving (symmetries are group actions that leave the system invariant) in all variables. They are explicit and applicable to arbitrary stiff potentials (that need not be quadratic). Their application to the Fermi-Pasta-Ulam problems shows accuracy and stability over four orders of magnitude of time scales. For stiff Langevin equations, they are symmetry preserving, time-reversible and Boltzmann-Gibbs reversible, quasi-symplectic on all variables and conformally symplectic with isotropic friction.Comment: 69 pages, 21 figure
    • ā€¦
    corecore