11,810 research outputs found

    Labelled transition systems as a Stone space

    Get PDF
    A fully abstract and universal domain model for modal transition systems and refinement is shown to be a maximal-points space model for the bisimulation quotient of labelled transition systems over a finite set of events. In this domain model we prove that this quotient is a Stone space whose compact, zero-dimensional, and ultra-metrizable Hausdorff topology measures the degree of bisimilarity such that image-finite labelled transition systems are dense. Using this compactness we show that the set of labelled transition systems that refine a modal transition system, its ''set of implementations'', is compact and derive a compactness theorem for Hennessy-Milner logic on such implementation sets. These results extend to systems that also have partially specified state propositions, unify existing denotational, operational, and metric semantics on partial processes, render robust consistency measures for modal transition systems, and yield an abstract interpretation of compact sets of labelled transition systems as Scott-closed sets of modal transition systems.Comment: Changes since v2: Metadata updat

    Hennessy-Milner Logic with Greatest Fixed Points as a Complete Behavioural Specification Theory

    Get PDF
    There are two fundamentally different approaches to specifying and verifying properties of systems. The logical approach makes use of specifications given as formulae of temporal or modal logics and relies on efficient model checking algorithms; the behavioural approach exploits various equivalence or refinement checking methods, provided the specifications are given in the same formalism as implementations. In this paper we provide translations between the logical formalism of Hennessy-Milner logic with greatest fixed points and the behavioural formalism of disjunctive modal transition systems. We also introduce a new operation of quotient for the above equivalent formalisms, which is adjoint to structural composition and allows synthesis of missing specifications from partial implementations. This is a substantial generalisation of the quotient for deterministic modal transition systems defined in earlier papers

    Logic of Intuitionistic Interactive Proofs (Formal Theory of Perfect Knowledge Transfer)

    Full text link
    We produce a decidable super-intuitionistic normal modal logic of internalised intuitionistic (and thus disjunctive and monotonic) interactive proofs (LIiP) from an existing classical counterpart of classical monotonic non-disjunctive interactive proofs (LiP). Intuitionistic interactive proofs effect a durable epistemic impact in the possibly adversarial communication medium CM (which is imagined as a distinguished agent), and only in that, that consists in the permanent induction of the perfect and thus disjunctive knowledge of their proof goal by means of CM's knowledge of the proof: If CM knew my proof then CM would persistently and also disjunctively know that my proof goal is true. So intuitionistic interactive proofs effect a lasting transfer of disjunctive propositional knowledge (disjunctively knowable facts) in the communication medium of multi-agent distributed systems via the transmission of certain individual knowledge (knowable intuitionistic proofs). Our (necessarily) CM-centred notion of proof is also a disjunctive explicit refinement of KD45-belief, and yields also such a refinement of standard S5-knowledge. Monotonicity but not communality is a commonality of LiP, LIiP, and their internalised notions of proof. As a side-effect, we offer a short internalised proof of the Disjunction Property of Intuitionistic Logic (originally proved by Goedel).Comment: continuation of arXiv:1201.3667; extended start of Section 1 and 2.1; extended paragraph after Fact 1; dropped the N-rule as primitive and proved it derivable; other, non-intuitionistic family members: arXiv:1208.1842, arXiv:1208.591

    Automated Synthesis of Tableau Calculi

    Full text link
    This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.Comment: 32 page

    On Modal Refinement and Consistency

    Get PDF
    Almost 20 years after the original conception, we revisit several fundamental questions about modal transition systems. First, we demonstrate the incompleteness of the standard modal refinement using a counterexample due to HĂĽttel. Deciding any refinement, complete with respect to the standard notions of implementation, is shown to be computationally hard (co-NP hard). Second, we consider four forms of consistency (existence of implementations) for modal specifications. We characterize each operationally, giving algorithms for deciding, and for synthesizing implementations, together with their complexities
    • …
    corecore