1,222 research outputs found

    State of B\"uchi Complementation

    Full text link
    Complementation of B\"uchi automata has been studied for over five decades since the formalism was introduced in 1960. Known complementation constructions can be classified into Ramsey-based, determinization-based, rank-based, and slice-based approaches. Regarding the performance of these approaches, there have been several complexity analyses but very few experimental results. What especially lacks is a comparative experiment on all of the four approaches to see how they perform in practice. In this paper, we review the four approaches, propose several optimization heuristics, and perform comparative experimentation on four representative constructions that are considered the most efficient in each approach. The experimental results show that (1) the determinization-based Safra-Piterman construction outperforms the other three in producing smaller complements and finishing more tasks in the allocated time and (2) the proposed heuristics substantially improve the Safra-Piterman and the slice-based constructions.Comment: 28 pages, 4 figures, a preliminary version of this paper appeared in the Proceedings of the 15th International Conference on Implementation and Application of Automata (CIAA

    Weak MSO+U with Path Quantifiers over Infinite Trees

    Full text link
    This paper shows that over infinite trees, satisfiability is decidable for weak monadic second-order logic extended by the unbounding quantifier U and quantification over infinite paths. The proof is by reduction to emptiness for a certain automaton model, while emptiness for the automaton model is decided using profinite trees.Comment: version of an ICALP 2014 paper with appendice

    Index problems for game automata

    Full text link
    For a given regular language of infinite trees, one can ask about the minimal number of priorities needed to recognize this language with a non-deterministic, alternating, or weak alternating parity automaton. These questions are known as, respectively, the non-deterministic, alternating, and weak Rabin-Mostowski index problems. Whether they can be answered effectively is a long-standing open problem, solved so far only for languages recognizable by deterministic automata (the alternating variant trivializes). We investigate a wider class of regular languages, recognizable by so-called game automata, which can be seen as the closure of deterministic ones under complementation and composition. Game automata are known to recognize languages arbitrarily high in the alternating Rabin-Mostowski index hierarchy; that is, the alternating index problem does not trivialize any more. Our main contribution is that all three index problems are decidable for languages recognizable by game automata. Additionally, we show that it is decidable whether a given regular language can be recognized by a game automaton

    The \mu-Calculus Alternation Hierarchy Collapses over Structures with Restricted Connectivity

    Full text link
    It is known that the alternation hierarchy of least and greatest fixpoint operators in the mu-calculus is strict. However, the strictness of the alternation hierarchy does not necessarily carry over when considering restricted classes of structures. A prominent instance is the class of infinite words over which the alternation-free fragment is already as expressive as the full mu-calculus. Our current understanding of when and why the mu-calculus alternation hierarchy is not strict is limited. This paper makes progress in answering these questions by showing that the alternation hierarchy of the mu-calculus collapses to the alternation-free fragment over some classes of structures, including infinite nested words and finite graphs with feedback vertex sets of a bounded size. Common to these classes is that the connectivity between the components in a structure from such a class is restricted in the sense that the removal of certain vertices from the structure's graph decomposes it into graphs in which all paths are of finite length. Our collapse results are obtained in an automata-theoretic setting. They subsume, generalize, and strengthen several prior results on the expressivity of the mu-calculus over restricted classes of structures.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    Exploiting the Temporal Logic Hierarchy and the Non-Confluence Property for Efficient LTL Synthesis

    Full text link
    The classic approaches to synthesize a reactive system from a linear temporal logic (LTL) specification first translate the given LTL formula to an equivalent omega-automaton and then compute a winning strategy for the corresponding omega-regular game. To this end, the obtained omega-automata have to be (pseudo)-determinized where typically a variant of Safra's determinization procedure is used. In this paper, we show that this determinization step can be significantly improved for tool implementations by replacing Safra's determinization by simpler determinization procedures. In particular, we exploit (1) the temporal logic hierarchy that corresponds to the well-known automata hierarchy consisting of safety, liveness, Buechi, and co-Buechi automata as well as their boolean closures, (2) the non-confluence property of omega-automata that result from certain translations of LTL formulas, and (3) symbolic implementations of determinization procedures for the Rabin-Scott and the Miyano-Hayashi breakpoint construction. In particular, we present convincing experimental results that demonstrate the practical applicability of our new synthesis procedure
    corecore