119 research outputs found

    A Fully Abstract Symbolic Semantics for Psi-Calculi

    Full text link
    We present a symbolic transition system and bisimulation equivalence for psi-calculi, and show that it is fully abstract with respect to bisimulation congruence in the non-symbolic semantics. A psi-calculus is an extension of the pi-calculus with nominal data types for data structures and for logical assertions representing facts about data. These can be transmitted between processes and their names can be statically scoped using the standard pi-calculus mechanism to allow for scope migrations. Psi-calculi can be more general than other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, or the concurrent constraint pi-calculus. Symbolic semantics are necessary for an efficient implementation of the calculus in automated tools exploring state spaces, and the full abstraction property means the semantics of a process does not change from the original

    Priorities Without Priorities: Representing Preemption in Psi-Calculi

    Full text link
    Psi-calculi is a parametric framework for extensions of the pi-calculus with data terms and arbitrary logics. In this framework there is no direct way to represent action priorities, where an action can execute only if all other enabled actions have lower priority. We here demonstrate that the psi-calculi parameters can be chosen such that the effect of action priorities can be encoded. To accomplish this we define an extension of psi-calculi with action priorities, and show that for every calculus in the extended framework there is a corresponding ordinary psi-calculus, without priorities, and a translation between them that satisfies strong operational correspondence. This is a significantly stronger result than for most encodings between process calculi in the literature. We also formally prove in Nominal Isabelle that the standard congruence and structural laws about strong bisimulation hold in psi-calculi extended with priorities.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    Analysing and Comparing Encodability Criteria

    Get PDF
    Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation) that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.Comment: In Proceedings EXPRESS/SOS 2015, arXiv:1508.06347. The Isabelle/HOL source files, and a full proof document, are available in the Archive of Formal Proofs, at http://afp.sourceforge.net/entries/Encodability_Process_Calculi.shtm

    Actor Network Procedures as Psi-calculi for Security Ceremonies

    Full text link
    The actor network procedures of Pavlovic and Meadows are a recent graphical formalism developed for describing security ceremonies and for reasoning about their security properties. The present work studies the relations of the actor network procedures (ANP) to the recent psi-calculi framework. Psi-calculi is a parametric formalism where calculi like spi- or applied-pi are found as instances. Psi-calculi are operational and largely non-graphical, but have strong foundation based on the theory of nominal sets and process algebras. One purpose of the present work is to give a semantics to ANP through psi-calculi. Another aim was to give a graphical language for a psi-calculus instance for security ceremonies. At the same time, this work provides more insight into the details of the ANPs formalization and the graphical representation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    A criterion for separating process calculi

    Get PDF
    We introduce a new criterion, replacement freeness, to discern the relative expressiveness of process calculi. Intuitively, a calculus is strongly replacement free if replacing, within an enclosing context, a process that cannot perform any visible action by an arbitrary process never inhibits the capability of the resulting process to perform a visible action. We prove that there exists no compositional and interaction sensitive encoding of a not strongly replacement free calculus into any strongly replacement free one. We then define a weaker version of replacement freeness, by only considering replacement of closed processes, and prove that, if we additionally require the encoding to preserve name independence, it is not even possible to encode a non replacement free calculus into a weakly replacement free one. As a consequence of our encodability results, we get that many calculi equipped with priority are not replacement free and hence are not encodable into mainstream calculi like CCS and pi-calculus, that instead are strongly replacement free. We also prove that variants of pi-calculus with match among names, pattern matching or polyadic synchronization are only weakly replacement free, hence they are separated both from process calculi with priority and from mainstream calculi.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Psi-calculi: a framework for mobile processes with nominal data and logic

    Get PDF
    The framework of psi-calculi extends the pi-calculus with nominal datatypes for data structures and for logical assertions and conditions. These can be transmitted between processes and their names can be statically scoped as in the standard pi-calculus. Psi-calculi can capture the same phenomena as other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, the concurrent constraint pi-calculus, and calculi with polyadic communication channels or pattern matching. Psi-calculi can be even more general, for example by allowing structured channels, higher-order formalisms such as the lambda calculus for data structures, and predicate logic for assertions. We provide ample comparisons to related calculi and discuss a few significant applications. Our labelled operational semantics and definition of bisimulation is straightforward, without a structural congruence. We establish minimal requirements on the nominal data and logic in order to prove general algebraic properties of psi-calculi, all of which have been checked in the interactive theorem prover Isabelle. Expressiveness of psi-calculi significantly exceeds that of other formalisms, while the purity of the semantics is on par with the original pi-calculus.Comment: 44 page
    corecore