23 research outputs found

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Accelerated Verification of Concurrent Systems

    Get PDF

    Accelerated Verification of Concurrent Systems

    Get PDF

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Session-based concurrency: between operational and declarative views

    Get PDF
    Communication-based software is ubiquitous nowadays. From e-banking to e-shopping, online activities often involve message exchanges between software components. These interactions are often governed by protocols that explicitly describe the sequences of communication actions that should be executed by each component. Crucially, these protocols are not isolated from a program’s context: external conditions such as timing constraints or exceptional events that occur during execution can affect message exchanges. As an additional difficulty, individual components are typically developed in different programming languages. In this setting, certifying that a program conforms to its intended protocols is challenging. A widely studied program verification technique uses behavioral type systems, which exploit abstract representations of these protocols to check that the program executes communication actions as intended. Unfortunately, the abstractions offered by behavioral type systems may neglect the influence that external conditions have on the program. This thesis addresses this issue by considering programming languages with declarative features, in which the governing conditions of the program can be adequately described. Our work develops correct translations between programming languages to show that languages with declarative features can indeed articulate a unified view of communication-based programs. Specifically, these translations demonstrate that the operational features of communication-based programs can be correctly represented by languages with declarative features. An additional contribution is a hybrid language that combines the best of both worlds, enabling the analysis of operational and declarative features in communication-based programs

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Weak CCP bisimilarity with strong procedures

    Get PDF
    International audienceConcurrent constraint programming (CCP) is a well-established model for concurrency that singles out the fundamental aspects of asynchronous systems whose agents (or processes) evolve by posting and querying (partial) information in a global medium. Bisimilarity is a standard behavioral equivalence in concurrency theory. However, only recently a well-behaved notion of bisimilarity for CCP, and a CCP partition refinement algorithm for deciding the strong version of this equivalence have been proposed. Weak bisimilarity is a central behavioral equivalence in process calculi and it is obtained from the strong case by taking into account only the actions that are observable in the system. Typically, the standard partition refinement can also be used for deciding weak bisimilarity simply by using Milner's reduction from weak to strong bisimilarity; a technique referred to as saturation. In this paper we demonstrate that, because of its involved labeled transitions, the above-mentioned saturation technique does not work for CCP. We give an alternative reduction from weak CCP bisimilarity to the strong one that allows us to use the CCP partition refinement algorithm for deciding this equivalence
    corecore