799 research outputs found

    Weak Bases of Boolean Co-Clones

    Full text link
    Universal algebra and clone theory have proven to be a useful tool in the study of constraint satisfaction problems since the complexity, up to logspace reductions, is determined by the set of polymorphisms of the constraint language. For classifications where primitive positive definitions are unsuitable, such as size-preserving reductions, weaker closure operations may be necessary. In this article we consider strong partial clones which can be seen as a more fine-grained framework than Post's lattice where each clone splits into an interval of strong partial clones. We investigate these intervals and give simple relational descriptions, weak bases, of the largest elements. The weak bases have a highly regular form and are in many cases easily relatable to the smallest members in the intervals, which suggests that the lattice of strong partial clones is considerably simpler than the full lattice of partial clones

    Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis

    Full text link
    Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Recent algebraic techniques introduced by Jonsson et al. (SODA 2013) show that the time complexity of the parameterized SAT(\cdot) problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation RR such that SAT(RR) can be solved at least as fast as any other NP-hard SAT(\cdot) problem. In this paper we extend this method and show that such languages also exist for the max ones problem (MaxOnes(Γ\Gamma)) and the Boolean valued constraint satisfaction problem over finite-valued constraint languages (VCSP(Δ\Delta)). With the help of these languages we relate MaxOnes and VCSP to the exponential time hypothesis in several different ways.Comment: This is an extended version of Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis, appearing in Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science MFCS 2014 Budapest, August 25-29, 201

    Galois correspondence for counting quantifiers

    Full text link
    We introduce a new type of closure operator on the set of relations, max-implementation, and its weaker analog max-quantification. Then we show that approximation preserving reductions between counting constraint satisfaction problems (#CSPs) are preserved by these two types of closure operators. Together with some previous results this means that the approximation complexity of counting CSPs is determined by partial clones of relations that additionally closed under these new types of closure operators. Galois correspondence of various kind have proved to be quite helpful in the study of the complexity of the CSP. While we were unable to identify a Galois correspondence for partial clones closed under max-implementation and max-quantification, we obtain such results for slightly different type of closure operators, k-existential quantification. This type of quantifiers are known as counting quantifiers in model theory, and often used to enhance first order logic languages. We characterize partial clones of relations closed under k-existential quantification as sets of relations invariant under a set of partial functions that satisfy the condition of k-subset surjectivity. Finally, we give a description of Boolean max-co-clones, that is, sets of relations on {0,1} closed under max-implementations.Comment: 28 pages, 2 figure

    Do Hard SAT-Related Reasoning Tasks Become Easier in the Krom Fragment?

    Full text link
    Many reasoning problems are based on the problem of satisfiability (SAT). While SAT itself becomes easy when restricting the structure of the formulas in a certain way, the situation is more opaque for more involved decision problems. We consider here the CardMinSat problem which asks, given a propositional formula ϕ\phi and an atom xx, whether xx is true in some cardinality-minimal model of ϕ\phi. This problem is easy for the Horn fragment, but, as we will show in this paper, remains Θ2\Theta_2-complete (and thus NP\mathrm{NP}-hard) for the Krom fragment (which is given by formulas in CNF where clauses have at most two literals). We will make use of this fact to study the complexity of reasoning tasks in belief revision and logic-based abduction and show that, while in some cases the restriction to Krom formulas leads to a decrease of complexity, in others it does not. We thus also consider the CardMinSat problem with respect to additional restrictions to Krom formulas towards a better understanding of the tractability frontier of such problems

    The power of primitive positive definitions with polynomially many variables

    Get PDF
    Two well-studied closure operators for relations are based on existentially quantified conjunctive formulas, primitive positive (p.p.) definitions, and primitive positive formulas without existential quantification, quantifier-free primitive positive definitions (q.f.p.p.) definitions. Sets of relations closed under p.p. definitions are known as co-clones and sets of relations closed under q.f.p.p. definitions as weak partial co-clones. The latter do however have limited expressivity, and the corresponding lattice of strong partial clones is of uncountably infinite cardinality even for the Boolean domain. Hence, it is reasonable to consider the expressiveness of p.p. definitions where only a small number of existentially quantified variables are allowed. In this article, we consider p.p. definitions allowing only polynomially many existentially quantified variables, and say that a co-clone closed under such definitions is polynomially closed, and otherwise superpolynomially closed. We investigate properties of polynomially closed co-clones and prove that if the corresponding clone contains a k-ary near-unanimity operation for k amp;gt;= 3, then the co-clone is polynomially closed, and if the clone does not contain a k-edge operation for any k amp;gt;= 2, then the co-clone is superpolynomially closed. For the Boolean domain we strengthen these results and prove a complete dichotomy theorem separating polynomially closed co-clones from superpolynomially closed co-clones. Using these results, we then proceed to investigate properties of strong partial clones corresponding to superpolynomially closed co-clones. We prove that if Gamma is a finite set of relations over an arbitrary finite domain such that the clone corresponding to Gamma is essentially unary, then the strong partial clone corresponding to Gamma is of infinite order and cannot be generated by a finite set of partial functions

    On the Strength of Uniqueness Quantification in Primitive Positive Formulas

    Get PDF
    Uniqueness quantification (Exists!) is a quantifier in first-order logic where one requires that exactly one element exists satisfying a given property. In this paper we investigate the strength of uniqueness quantification when it is used in place of existential quantification in conjunctive formulas over a given set of relations Gamma, so-called primitive positive definitions (pp-definitions). We fully classify the Boolean sets of relations where uniqueness quantification has the same strength as existential quantification in pp-definitions and give several results valid for arbitrary finite domains. We also consider applications of Exists!-quantified pp-definitions in computer science, which can be used to study the computational complexity of problems where the number of solutions is important. Using our classification we give a new and simplified proof of the trichotomy theorem for the unique satisfiability problem, and prove a general result for the unique constraint satisfaction problem. Studying these problems in a more rigorous framework also turns out to be advantageous in the context of lower bounds, and we relate the complexity of these problems to the exponential-time hypothesis

    A Gap Trichotomy for Boolean Constraint Problems: Extending Schaefer\u27s Theorem

    Get PDF

    A Preliminary Investigation of Satisfiability Problems Not Harder than 1-in-3-SAT

    Get PDF
    The parameterized satisfiability problem over a set of Boolean relations Gamma (SAT(Gamma)) is the problem of determining whether a conjunctive formula over Gamma has at least one model. Due to Schaefer\u27s dichotomy theorem the computational complexity of SAT(Gamma), modulo polynomial-time reductions, has been completely determined: SAT(Gamma) is always either tractable or NP-complete. More recently, the problem of studying the relationship between the complexity of the NP-complete cases of SAT(Gamma) with restricted notions of reductions has attracted attention. For example, Impagliazzo et al. studied the complexity of k-SAT and proved that the worst-case time complexity increases infinitely often for larger values of k, unless 3-SAT is solvable in subexponential time. In a similar line of research Jonsson et al. studied the complexity of SAT(Gamma) with algebraic tools borrowed from clone theory and proved that there exists an NP-complete problem SAT(R^{neq,neq,neq,01}_{1/3}) such that there cannot exist any NP-complete SAT(Gamma) problem with strictly lower worst-case time complexity: the easiest NP-complete SAT(Gamma) problem. In this paper we are interested in classifying the NP-complete SAT(Gamma) problems whose worst-case time complexity is lower than 1-in-3-SAT but higher than the easiest problem SAT(R^{neq,neq,neq,01}_{1/3}). Recently it was conjectured that there only exists three satisfiability problems of this form. We prove that this conjecture does not hold and that there is an infinite number of such SAT(Gamma) problems. In the process we determine several algebraic properties of 1-in-3-SAT and related problems, which could be of independent interest for constructing exponential-time algorithms

    A Dichotomy Theorem for the Inverse Satisfiability Problem

    Get PDF
    The inverse satisfiability problem over a set of Boolean relations Gamma (Inv-SAT(Gamma)) is the computational decision problem of, given a set of models R, deciding whether there exists a SAT(Gamma) instance with R as its set of models. This problem is co-NP-complete in general and a dichotomy theorem for finite ? containing the constant Boolean relations was obtained by Kavvadias and Sideri. In this paper we remove the latter condition and prove that Inv-SAT(Gamma) is always either tractable or co-NP-complete for all finite sets of relations Gamma, thus solving a problem open since 1998. Very little of the techniques used by Kavvadias and Sideri are applicable and we have to turn to more recently developed algebraic approaches based on partial polymorphisms. We also consider the case when ? is infinite, where the situation differs markedly from the case of SAT. More precisely, we show that there exists infinite Gamma such that Inv-SAT(Gamma) is tractable even though there exists finite Delta is subset of Gamma such that Inv-SAT(Delta) is co-NP-complete
    corecore