753 research outputs found

    Convergence of numerical methods for stochastic differential equations in mathematical finance

    Full text link
    Many stochastic differential equations that occur in financial modelling do not satisfy the standard assumptions made in convergence proofs of numerical schemes that are given in textbooks, i.e., their coefficients and the corresponding derivatives appearing in the proofs are not uniformly bounded and hence, in particular, not globally Lipschitz. Specific examples are the Heston and Cox-Ingersoll-Ross models with square root coefficients and the Ait-Sahalia model with rational coefficient functions. Simple examples show that, for example, the Euler-Maruyama scheme may not converge either in the strong or weak sense when the standard assumptions do not hold. Nevertheless, new convergence results have been obtained recently for many such models in financial mathematics. These are reviewed here. Although weak convergence is of traditional importance in financial mathematics with its emphasis on expectations of functionals of the solutions, strong convergence plays a crucial role in Multi Level Monte Carlo methods, so it and also pathwise convergence will be considered along with methods which preserve the positivity of the solutions.Comment: Review Pape

    Postprocessed integrators for the high order integration of ergodic SDEs

    Full text link
    The concept of effective order is a popular methodology in the deterministic literature for the construction of efficient and accurate integrators for differential equations over long times. The idea is to enhance the accuracy of a numerical method by using an appropriate change of variables called the processor. We show that this technique can be extended to the stochastic context for the construction of new high order integrators for the sampling of the invariant measure of ergodic systems. The approach is illustrated with modifications of the stochastic θ\theta-method applied to Brownian dynamics, where postprocessors achieving order two are introduced. Numerical experiments, including stiff ergodic systems, illustrate the efficiency and versatility of the approach.Comment: 21 pages, to appear in SIAM J. Sci. Compu

    Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients

    Get PDF
    We are interested in the strong convergence and almost sure stability of Euler-Maruyama (EM) type approximations to the solutions of stochastic differential equations (SDEs) with non-linear and non-Lipschitzian coefficients. Motivation comes from finance and biology where many widely applied models do not satisfy the standard assumptions required for the strong convergence. In addition we examine the globally almost surely asymptotic stability in this non-linear setting for EM type schemes. In particular, we present a stochastic counterpart of the discrete LaSalle principle from which we deduce stability properties for numerical methods

    Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients

    Get PDF
    In this work, we generalize the current theory of strong convergence rates for the backward Euler–Maruyama scheme for highly non-linear stochastic differential equations, which appear in both mathematical finance and bio-mathematics. More precisely, we show that under a dissipative condition on the drift coefficient and superlinear growth condition on the diffusion coefficient the BEM scheme converges with strong order of a half. This type of convergence gives theoretical foundations for efficient variance reduction techniques for Monte Carlo simulations. We support our theoretical results with relevant examples, such as stochastic population models and stochastic volatility models

    A symmetry-adapted numerical scheme for SDEs

    Get PDF
    We propose a geometric numerical analysis of SDEs admitting Lie symmetries which allows us to individuate a symmetry adapted coordinates system where the given SDE has notable invariant properties. An approximation scheme preserving the symmetry properties of the equation is introduced. Our algorithmic procedure is applied to the family of general linear SDEs for which two theoretical estimates of the numerical forward error are established.Comment: A numerical example adde
    • …
    corecore