5,708 research outputs found

    Learning Moore Machines from Input-Output Traces

    Full text link
    The problem of learning automata from example traces (but no equivalence or membership queries) is fundamental in automata learning theory and practice. In this paper we study this problem for finite state machines with inputs and outputs, and in particular for Moore machines. We develop three algorithms for solving this problem: (1) the PTAP algorithm, which transforms a set of input-output traces into an incomplete Moore machine and then completes the machine with self-loops; (2) the PRPNI algorithm, which uses the well-known RPNI algorithm for automata learning to learn a product of automata encoding a Moore machine; and (3) the MooreMI algorithm, which directly learns a Moore machine using PTAP extended with state merging. We prove that MooreMI has the fundamental identification in the limit property. We also compare the algorithms experimentally in terms of the size of the learned machine and several notions of accuracy, introduced in this paper. Finally, we compare with OSTIA, an algorithm that learns a more general class of transducers, and find that OSTIA generally does not learn a Moore machine, even when fed with a characteristic sample

    Weak equivalence of higher-dimensional automata

    Get PDF
    This paper introduces a notion of equivalence for higher-dimensional automata, called weak equivalence. Weak equivalence focuses mainly on a traditional trace language and a new homology language, which captures the overall independence structure of an HDA. It is shown that weak equivalence is compatible with both the tensor product and the coproduct of HDAs and that, under certain conditions, HDAs may be reduced to weakly equivalent smaller ones by merging and collapsing cubes.This research was partially supported by FCT (Fundacao para a Ciencia e a Tecnologia, Portugal) through project UID/MAT/00013/2013

    Investigating The Algebraic Structure of Dihomotopy Types

    Get PDF
    This presentation is the sequel of a paper published in GETCO'00 proceedings where a research program to construct an appropriate algebraic setting for the study of deformations of higher dimensional automata was sketched. This paper focuses precisely on detailing some of its aspects. The main idea is that the category of homotopy types can be embedded in a new category of dihomotopy types, the embedding being realized by the Globe functor. In this latter category, isomorphism classes of objects are exactly higher dimensional automata up to deformations leaving invariant their computer scientific properties as presence or not of deadlocks (or everything similar or related). Some hints to study the algebraic structure of dihomotopy types are given, in particular a rule to decide whether a statement/notion concerning dihomotopy types is or not the lifting of another statement/notion concerning homotopy types. This rule does not enable to guess what is the lifting of a given notion/statement, it only enables to make the verification, once the lifting has been found.Comment: 28 pages ; LaTeX2e + 4 figures ; Expository paper ; Minor typos corrections ; To appear in GETCO'01 proceeding

    Weak equivalence of higher-dimensional automata

    Get PDF
    This paper introduces a notion of equivalence for higher-dimensional automata, called weak equivalence. Weak equivalence focuses mainly on a traditional trace language and a new homology language, which captures the overall independence structure of an HDA. It is shown that weak equivalence is compatible with both the tensor product and the coproduct of HDAs and that, under certain conditions, HDAs may be reduced to weakly equivalent smaller ones by merging and collapsing cubes

    Supervisory control synthesis for large-scale infrastructural systems

    Get PDF

    Supervisory control synthesis for large-scale infrastructural systems

    Get PDF

    An Inductive Approach for Modal Transition System Refinement

    Get PDF
    Modal Transition Systems (MTSs) provide an appropriate framework for modelling software behaviour when only a partial specification is available. A key characteristic of an MTS is that it explicitly models events that a system is required to provide and is proscribed from exhibiting, and those for which no specification is available, called maybe events. Incremental elaboration of maybe events into either required or proscribed events can be seen as a process of MTS refinement, resulting from extending a given partial specification with more information about the system behaviour. This paper focuses on providing automated support for computing strong refinements of an MTS with respect to event traces that describe required and proscribed behaviours using a non-monotonic inductive logic programming technique. A real case study is used to illustrate the practical application of the approach
    • …
    corecore