887 research outputs found

    Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities

    Get PDF
    In this paper we consider instabilities of localised solutions in planar neural field firing rate models of Wilson-Cowan or Amari type. Importantly we show that angular perturbations can destabilise spatially localised solutions. For a scalar model with Heaviside firing rate function we calculate symmetric one-bump and ring solutions explicitly and use an Evans function approach to predict the point of instability and the shapes of the dominant growing modes. Our predictions are shown to be in excellent agreement with direct numerical simulations. Moreover, beyond the instability our simulations demonstrate the emergence of multi-bump and labyrinthine patterns. With the addition of spike-frequency adaptation, numerical simulations of the resulting vector model show that it is possible for structures without rotational symmetry, and in particular multi-bumps, to undergo an instability to a rotating wave. We use a general argument, valid for smooth firing rate functions, to establish the conditions necessary to generate such a rotational instability. Numerical continuation of the rotating wave is used to quantify the emergent angular velocity as a bifurcation parameter is varied. Wave stability is found via the numerical evaluation of an associated eigenvalue problem

    Snakes and ladders in an inhomogeneous neural field model

    Get PDF
    Continuous neural field models with inhomogeneous synaptic connectivities are known to support traveling fronts as well as stable bumps of localized activity. We analyze stationary localized structures in a neural field model with periodic modulation of the synaptic connectivity kernel and find that they are arranged in a snakes-and-ladders bifurcation structure. In the case of Heaviside firing rates, we construct analytically symmetric and asymmetric states and hence derive closed-form expressions for the corresponding bifurcation diagrams. We show that the ideas proposed by Beck and co-workers to analyze snaking solutions to the Swift-Hohenberg equation remain valid for the neural field model, even though the corresponding spatial-dynamical formulation is non-autonomous. We investigate how the modulation amplitude affects the bifurcation structure and compare numerical calculations for steep sigmoidal firing rates with analytic predictions valid in the Heaviside limit

    Stationary bumps in a piecewise smooth neural field model with synaptic depression

    Get PDF
    We analyze the existence and stability of stationary pulses or bumps in a one–dimensional piecewise smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, there exists a stable bump for sufficiently weak synaptic depression. However, as synaptic depression becomes stronger, the bump became unstable with respect to perturbations that shift the boundary of the bump, leading to the formation of a traveling pulse. The local stability of a bump is determined by the spectrum of a piecewise linear operator that keeps track of the sign of perturbations of the bump boundary. This results in a number of differences from previous studies of neural field models with Heaviside firing rate functions, where any discontinuities appear inside convolutions so that the resulting dynamical system is smooth. We also extend our results to the case of radially symmetric bumps in two–dimensional neural field models

    On the spectra of certain integro-differential-delay problems with applications in neurodynamics

    Get PDF
    We investigate the spectrum of certain integro-differential-delay equations (IDDEs) which arise naturally within spatially distributed, nonlocal, pattern formation problems. Our approach is based on the reformulation of the relevant dispersion relations with the use of the Lambert function. As a particular application of this approach, we consider the case of the Amari delay neural field equation which describes the local activity of a population of neurons taking into consideration the finite propagation speed of the electric signal. We show that if the kernel appearing in this equation is symmetric around some point a= 0 or consists of a sum of such terms, then the relevant dispersion relation yields spectra with an infinite number of branches, as opposed to finite sets of eigenvalues considered in previous works. Also, in earlier works the focus has been on the most rightward part of the spectrum and the possibility of an instability driven pattern formation. Here, we numerically survey the structure of the entire spectra and argue that a detailed knowledge of this structure is important within neurodynamical applications. Indeed, the Amari IDDE acts as a filter with the ability to recognise and respond whenever it is excited in such a way so as to resonate with one of its rightward modes, thereby amplifying such inputs and dampening others. Finally, we discuss how these results can be generalised to the case of systems of IDDEs
    corecore