221 research outputs found

    Target Detection Using a Wavelet-Based Fractal Scheme

    Get PDF
    In this thesis, a target detection technique using a rotational invariant wavelet-based scheme is presented. The technique is evaluated on Synthetic Aperture Rader (SAR) imaging and compared with a previously developed fractal-based technique, namely the extended fractal (EF) model. Both techniques attempt to exploit the textural characteristics of SAR imagery. Recently, a wavelet-based fractal feature set, similar to the proposed one, was compared with the EF feature for a general texture classification problem. The wavelet-based technique yielded a lower classification error than EF, which motivated the comparison between the two techniques presented in this paper. Experimental results show that the proposed techniques feature map provides a lower false alarm rate than the previously developed method

    Study on Co-occurrence-based Image Feature Analysis and Texture Recognition Employing Diagonal-Crisscross Local Binary Pattern

    Get PDF
    In this thesis, we focus on several important fields on real-world image texture analysis and recognition. We survey various important features that are suitable for texture analysis. Apart from the issue of variety of features, different types of texture datasets are also discussed in-depth. There is no thorough work covering the important databases and analyzing them in various viewpoints. We persuasively categorize texture databases ? based on many references. In this survey, we put a categorization to split these texture datasets into few basic groups and later put related datasets. Next, we exhaustively analyze eleven second-order statistical features or cues based on co-occurrence matrices to understand image texture surface. These features are exploited to analyze properties of image texture. The features are also categorized based on their angular orientations and their applicability. Finally, we propose a method called diagonal-crisscross local binary pattern (DCLBP) for texture recognition. We also propose two other extensions of the local binary pattern. Compare to the local binary pattern and few other extensions, we achieve that our proposed method performs satisfactorily well in two very challenging benchmark datasets, called the KTH-TIPS (Textures under varying Illumination, Pose and Scale) database, and the USC-SIPI (University of Southern California ? Signal and Image Processing Institute) Rotations Texture dataset.九州工業大学博士学位論文 学位記番号:工博甲第354号 学位授与年月日:平成25年9月27日CHAPTER 1 INTRODUCTION|CHAPTER 2 FEATURES FOR TEXTURE ANALYSIS|CHAPTER 3 IN-DEPTH ANALYSIS OF TEXTURE DATABASES|CHAPTER 4 ANALYSIS OF FEATURES BASED ON CO-OCCURRENCE IMAGE MATRIX|CHAPTER 5 CATEGORIZATION OF FEATURES BASED ON CO-OCCURRENCE IMAGE MATRIX|CHAPTER 6 TEXTURE RECOGNITION BASED ON DIAGONAL-CRISSCROSS LOCAL BINARY PATTERN|CHAPTER 7 CONCLUSIONS AND FUTURE WORK九州工業大学平成25年

    Regularity analysis for patterned texture inspection

    Get PDF
    This paper considers regularity analysis for patterned texture material inspection. Patterned texture-like fabric is built on a repetitive unit of a pattern. Regularity is one of the most important features in many textures. In this paper, a new patterned texture inspection approach called the regular bands (RB) method is described. First, the properties of textures and the meaning of regularity measurements are presented. Next, traditional regularity analysis for patterned textures is introduced. Many traditional approaches such as co-occurrence matrices, autocorrelation, traditional image subtraction and hash function are based on the concept of periodicity. These approaches have been applied for image retrieval, image synthesis, and defect detection of patterned textures. In this paper, a new measure of periodicity for patterned textures is described. The Regular Bands method is based on the idea of periodicity. A detailed description of the RB method with definitions, procedures, and explanations is given. There is also a detailed evaluation using the Regular Bands of some patterned textures. Three kinds of patterned fabric samples are used in the evaluation and a high detection success rate is achieved. Finally, there is a discussion of the method and some conclusions. © 2006 IEEE.published_or_final_versio
    corecore